K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

Bn tự vẽ hình nha!!1

a) Xét \(\Delta AOB \)\(\Delta COD\) có:

OA = OC (gt)

\(\widehat{AOB} = \widehat{COD}\) (đối đỉnh)

OB = OD (gt)

\(\Rightarrow\)\(\Delta AOB = \Delta COD (cgc)\)

b) Xét \(\Delta DKO\)\(\Delta BHO\) có:

\(\widehat{DKO} = \widehat{BHO} = 90^0\)

OD = OB (gt)

\(\widehat{DOK} = \widehat{BOH}\) (đối đỉnh)

\(\Rightarrow\)\(\Delta DKO = \Delta BHO (ch-gn)\)

\(\Rightarrow DK=BH\) (2 cạnh tương ứng)

c) Vì \(\Delta AOB = \Delta COD (cmt)\)

\(\Rightarrow\)\(\widehat{ABO} = \widehat{CDO}\) (2 góc tương ứng)

Xét \(\Delta ODN\)\(\Delta OBM\) có:

OD = OB (gt)

\(\widehat{ODN} = \widehat{OBM}\) (cmt)

DN = BM (gt)

\(\Rightarrow\)\(\Delta ODN = \Delta OBM (cgc)\)

\(\Rightarrow\)\(\widehat{DON} = \widehat{BOM}\) (2 góc tương ứng)

Ta có:

\(\widehat{BOM} + \widehat{MOD} =180^0\) (kề bù)

\(\widehat{DON} = \widehat{BOM}\) (cmt)

\(\Rightarrow\)\(\widehat{DON} + \widehat{MOD} =180^0\)

Lại có: \(\widehat{DON} + \widehat{MOD} =\widehat{MON}\)

\(\Rightarrow\)\(\widehat{MON} = 180^0\)

hay M, O , N thẳng hàng

6 tháng 1 2017

có cần vẽ hình ko bn

14 tháng 12 2023

a: Sửa đề: Chứng minh ΔOCD=ΔOAB

Xét ΔOCD và ΔOAB có

OC=OA

\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)

OD=OB

Do đó: ΔOCD=ΔOAB

b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có

BO=DO

\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)

Do đó: ΔBHO=ΔDKO

=>BH=DK

c: ta có;ΔOBA=ΔODC

=>\(\widehat{OBA}=\widehat{ODC}\)

Xét ΔMBO và ΔNDO có

MB=ND

\(\widehat{MBO}=\widehat{NDO}\)

BO=DO

Do đó: ΔMBO=ΔNDO

=>\(\widehat{MOB}=\widehat{NOD}\)

mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)

nên \(\widehat{NOD}+\widehat{MOD}=180^0\)

=>\(\widehat{MON}=180^0\)

=>M,O,N thẳng hàng

14 tháng 12 2023

a: Sửa đề: Chứng minh ΔOCD=ΔOAB

Xét ΔOCD và ΔOAB có

OC=OA

\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)

OD=OB

Do đó: ΔOCD=ΔOAB

b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có

BO=DO

\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)

Do đó: ΔBHO=ΔDKO

=>BH=DK

c: ta có;ΔOBA=ΔODC

=>\(\widehat{OBA}=\widehat{ODC}\)

Xét ΔMBO và ΔNDO có

MB=ND

\(\widehat{MBO}=\widehat{NDO}\)

BO=DO

Do đó: ΔMBO=ΔNDO

=>\(\widehat{MOB}=\widehat{NOD}\)

mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)

nên \(\widehat{NOD}+\widehat{MOD}=180^0\)

=>\(\widehat{MON}=180^0\)

=>M,O,N thẳng hàng

17 tháng 12 2021

a: Xét tứ giác ABCD có 

O là trung điểm của AC

O là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB//CD

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

5 tháng 10 2019

2. Câu hỏi của ๛Ąкเйą ℌ๏àйǥ Ŧỷツ - Toán lớp 7 - Học toán với OnlineMath

3 tháng 1 2017

a) xét \(\Delta DOC,\Delta BOA:\)

\(\widehat{DOC}=\widehat{BOA}\left(đđ\right)\)

OA = OC ( gt )

OD = OB ( gt )

\(\rightarrow\Delta DOC=\Delta BOA\left(c.g.c\right)\)

\(\Rightarrow\widehat{ODC}=\widehat{OBA}\) ( 2 góc tương ứng )

mà chúng lại nằm ở vị trí so le trong

\(\Rightarrow\) AB// CD

c) xét \(\Delta IOM,\Delta FON:\)

ON = OM ( \(\Delta AOM=\Delta CON\) )

\(\widehat{O_1}=\widehat{O_2}\) ( đđ)

\(\widehat{I}=\widehat{F}=90^o\left(gt\right)\)

\(\rightarrow\Delta IOM=\Delta FON\) ( cạnh huyền góc nhọn )

\(\Rightarrow MI=NF\) ( 2 cạnh tương ứng )