Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Kẻ phân giác AD,BK vuông góc với AD
sin A/2=sinBAD
xét tam giác AKB vuông tại K,có:
sinBAD=BK/AB (1)
xét tam giác BKD vuông tại K,có
BK<=BD thay vào (1):
sinBAD<=BD/AB(2)
lại có:BD/CD=AB/AC
=>BD/(BD+CD)=AB/(AB+AC)
=>BD/BC=AB/(AB+AC)
=>BD=(AB*BC)/(AB+AC) thay vào (2)
sinBAD<=[(AB*BC)/(AB+AC)]/AB
= BC/(AB + AC)
=>ĐPCM
b: \(\dfrac{AB\cdot BC}{2}\cdot sinB\)
\(=\dfrac{AB\cdot BC}{2}\cdot\dfrac{AC}{BC}=\dfrac{AB\cdot AC}{2}\)
\(=S_{ABC}\)
a: Xét ΔABD vuông tại A có tan ABD=AD/AB
Xét ΔCBA có BD là phân giác
nên AD/AB=CD/BC
=>\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)
=>\(tan\left(ABD\right)=\dfrac{AC}{AB+BC}\)
Kẻ đg cao BH
a) + \(sinA=\frac{BH}{AB}=\frac{BH}{c}\)
+ \(S_{ABC}=\frac{1}{2}BH\cdot AC=\frac{BH\cdot AC\cdot AB}{2AB}\)
\(=\frac{bc\cdot sinA}{2}\)
b) + \(sinC=\frac{BH}{BC}=\frac{BH}{a}\)
\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{c}}{\frac{BH}{a}}=\frac{a}{c}\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)
+ Tương tự : \(\frac{a}{b}=\frac{sinA}{sinB}\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}\)
Do đó: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Hình tự vẽ nha
Kẻ phân giác \(AD,BK\perp AD\)
\(\sin\dfrac{A}{2}=\sin BAD\)
xét \(\Delta AKB\) vuông tại K,có:
\(\sin BAD=\dfrac{BK}{AB}\left(1\right)\)
Xét \(\Delta BKD\) vuông tại K,có :
\(BK\le BD\) thay vào (1):
\(\sin BAD\le\dfrac{BD}{AB}\left(2\right)\)
lại có:\(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{BD}{BD+CD}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow BD=\dfrac{AB\cdot AC}{AB+AC}\) thay vào (2)
\(\sin BAD\le\dfrac{\dfrac{AB\cdot AC}{AB+AC}}{AB}=\dfrac{BC}{AB+AC}\)
\(\RightarrowĐPCM\)
Tick plz
Kẻ đường cao AH của tam giác ABC
\(sinC=\dfrac{AH}{AC}\)
\(sinB=\dfrac{AH}{AB}\)
\(\Rightarrow\dfrac{sinB}{sinC}=\dfrac{\dfrac{AH}{AB}}{\dfrac{AH}{AC}}=\dfrac{AC}{AB}=\dfrac{b}{c}\Rightarrow\dfrac{b}{sinB}=\dfrac{c}{sinC}\left(1\right)\)
Kẻ đường cao CE của tam giác ABC rồi CMTT ta được:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}\left(2\right)\)
Từ (1) và (2) suy ra đpcm
Lời giải:
Kẻ $AH$ vuông góc với $BC$. Khi đó:
\(S_{ABC}=\frac{AH.BC}{2}(1)\)
Mặt khác, theo công thức lượng giác:
\(\frac{AH}{AB}=\sin B\Rightarrow AH=\sin B.AB(2)\)
Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin B.AB.BC}{2}=\frac{\sin B.ca}{2}\) (đpcm)