Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD
CO TAM GIAC ABC CAN TAI A
=>AB=AC( DN TAM GIÁC CÂN)
SUY RA GÓC ABC = GÓC ACB( DN TAM GIÁC CÂN)
CÓ GÓC ABC VÀ GÓC ABD LÀ 2 GÓC KỀ BÙ
SUY RA GÓC ABD+ GÓC ABC = 180 ĐỘ
CÓ GÓC ACB VÀ GÓC ACE LÀ 2 GÓC KỀ BÙ
SUY RA GÓC ACB + GÓC ACE = 180 ĐỘ
MÀ GÓC ABC = GÓC ACB( CMT)
SUY RA GÓC ABD+ GÓC ABC = GÓC ACB + ACE( =180 ĐỘ)
=> GÓC ABD= GÓC ACE
XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ:
AB=AC( CMT)
GÓC ABD = GỐC ACE ( GMT)
DB=EC( GT)
=> TAM GIÁC ADB = TAM GIÁC AEC( C-G-C)
=>AD=AE( 2 CẠNH TƯƠNG ỨNG)
=> TAM GIAC ADE CAN TAI A( DN TAM GIAC CAN)
b)CÓ TAM GIÁC ADE CÂN TẠI A( CMT)
=>GÓC D = GÓC E( ĐN TAM GIÁC CÂN)
CÓ M LÀ TRUNG ĐIỂM CỦA BC=>BM=CM
CO ME = MC+CE
MD=MB+BD
MA CE=BD
MB=MC
=>MD=ME
XÉT TAM GIÁC AMD VÀ TAM GIÁC AME CÓ:
AD= AE(CM CÂU a)
GÓC D=GÓC E(CMT)
MD=ME( CMT)
SUY RA TAM GIÁC AMD= TAM GIÁC AME( C-G-C)
=>GÓC ĐAM = GÓC EAM( 2 GÓC TƯƠNG ỨNG)
SUY RA AM LÀ TIA PHÂN GIÁC CỦA GÓC DAE
CÓ TAM GIÁC AMD = TAM GIÁC AME
SUY RA GÓC AMD = GÓC AME( 2 GÓC TƯƠNG ỨNG)
MÀ 2 GÓC NÀY LÀ 2 GÓC KỀ BÙ
SUY RA AMD+AME = 180 ĐỘ
CÓ GÓC AMD = GÓC AME = 180 ĐỘ :2 = 90 ĐỘ
SUY RA AM VUONG GOC VS DE
CHO BN 2 CAU TRC LAM NAY
NHO K CHO MINH NHA
CO TAM GIAC ADM = TAM GIAC ACE( CM O CAU A)
SUY RA GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)
XÉT TAM GIC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:
AB = AC ( CM Ở CÂU a)
GÓC DAB = GÓC EAC ( CMT)
=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)
=> BH = CK( 2 CẠNH TƯƠNG ỨNG)
d)KHI NÀO MÌNH NGHĨ XONG MÌNH SẼ NS CHO CẬU
2
bạn ơi bạn có nhầm đề không sao góc A < 900??? Bạn xem lại đề nhé
a) Có : \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân)
Mà : \(\left\{{}\begin{matrix}\widehat{ABE}=\widehat{EBC}\\\widehat{ACD}=\widehat{DCB}\end{matrix}\right.\)(gt)
=> \(\widehat{ABE}=\widehat{ACD}\)
Xét \(\Delta ABE;\Delta ADC\) có :
\(\widehat{ABE}=\widehat{ACD}\left(cmt\right)\)
\(AB=AC\) (do \(\Delta ABC\) cân)
\(\widehat{A}:chung\)
=> \(\Delta ABE=\Delta ADC\left(g.c.g\right)\)
=> \(BD=CE\) (2 góc tương ứng)
b) Xét \(\Delta BDC;\Delta CEB\) có :
\(\widehat{BDC}=\widehat{ECB}\) (cmt)
\(BC:chung\)
\(\widehat{BCD}=\widehat{CBE}\left(cmt\right)\)
=> \(\Delta BDC=\Delta CEB\left(g.c.g\right)\)
=> \(\widehat{BDC}=\widehat{CEB}\) (2 góc tương ứng)
=> \(DB=EC\) (2 cạnh tương ứng)
Xét \(\Delta BID;\Delta CIE\) có :
\(\widehat{DBI}=\widehat{ECI}\) (cmt)
\(DB=EC\left(cmt\right)\)
\(\widehat{BDI}=\widehat{CEI}\left(do\widehat{BDC}=\widehat{CED}-cmt\right)\)
=> \(\Delta BID=\Delta CIE\left(g.c.g\right)\)
c) Xét \(\Delta AIB;\Delta AIC\) có :
\(AB=AC\left(gt\right)\)
\(AI:chung\)
\(BI=CI\left(do\Delta BID=\Delta CIE-cmt\right)\)
=> \(\Delta AIB=\Delta AIC\left(c.c.c\right)\)
=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng)
=> AI là tia phân giác của \(\widehat{ABC}\)
Mà hơn nữa : \(\Delta ABC\) cân tại A
=> AI đồng thời là đường trung trực của \(\Delta ABC\)
Hay : AI là đường trung trực của BC