\(\frac{AB}{CD}\)=\(\frac{2}{3}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Ta có: \(\frac{AB}{CD}=\frac{2}{3}\Rightarrow\frac{AB}{2}=\frac{CD}{3}\Leftrightarrow\frac{AB}{2.4}=\frac{CD}{3.4}\)

Và: \(\frac{CD}{EF}=\frac{4}{6}\Rightarrow\frac{CD}{4}=\frac{EF}{6}\Leftrightarrow\frac{CD}{4.3}=\frac{FE}{6.3}\)

\(\Rightarrow\frac{AB}{8}=\frac{CD}{12}=\frac{EF}{18}=\frac{AB+CD+EF}{8+12+18}=\frac{70}{38}=\frac{35}{19}\)

\(\Rightarrow\frac{AB}{8}=\frac{35}{19}\Rightarrow AB=\frac{35.8}{19}=\frac{280}{19}cm\)

\(\Rightarrow\frac{CD}{12}=\frac{35}{19}\Rightarrow CD=\frac{35.12}{19}=\frac{420}{19}cm\)

\(\Rightarrow\frac{FE}{18}=\frac{15}{19}\Rightarrow EF=\frac{35.18}{19}=\frac{630}{19}cm\)

Vậy ........................

29 tháng 3 2020

Mình đính chính lại là E thuộc AC nhé!

29 tháng 3 2020

tek m ko bt lm ak???

19 tháng 10 2016

A B C D E F

Áp dụng đường trung bình của hình thang là ra nhé ...

Em tham khảo nha.

Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)

\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)

Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)

\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)

Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)

18 tháng 2 2020

A B C a O E F D

a,  xét tam giác ABD có : EO // AB (Gt)

=> EO/AB = DO/DB (hệ quả)                   (1)

xét tam giác ABC có : OF // AB (gt)

=> OF/AB = OC/CA (hệ quả)                          (2)

xét tam giác ODC có : AB // DC (gt)

=> DO/DB = OC/CA     (hệ quả)                             (3)

(1)(2)(3) => OE = OF 

b,  xét tam giác ABD  có EO // AB (gt)

=> EO/AB = DE/AD (hệ quả)                            (4)

xét tam giác ACD có : EO // DC 

=> EO/DC = EA/AD (hệ quả)                                (5)

(4)(5) => EO/AB + EO/DC = DE/AD + EA/AD

=> EO(1/AB + 1/BC) = AD/AD = 1                                 (*)

 xét tam giác ACB có : FO // AB 

=> OF/AB = FC/BC (hệ quả)                           (6)

xét tam giác BDC có : OF // DC 

=> OF/DC = BF/BC (hệ quả)                                 (7)

(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC

=> OF(1/AB + 1/DC) = BC/BC = 1            (**)

(*)(**) => OF(1/AB + 1/CD) + OE(1/AB + 1/DC) = 2

=> (OF + OE)(1/AB + 1/DC) = 2

có OF + OE = EF

=> 1/AB + 1/DC = 2/EF