Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét:
\(\frac{1}{2^2}<\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}<\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)
....
\(\frac{1}{10^2}<\frac{1}{10\times11}=\frac{1}{10}-\frac{1}{11}\)
Tính tổng ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}<1\)
đặt A=1/1.2+1/2.3+...+1/9.10
B=1/2^2+1/3^2+...+1/10^2
ta có:B=1/2^2+1/3^2+...+1/10^2<A=1/1.2+1/2.3+...+1/9.10
mà A=1/1.2+1/2.3+...+1/9.10
=1-1/2+1/2-1/3+...+1/9-1/10
=1-1/10<1
=>A<B<1
=>A<1
Ta có
1/2<4
1/3<4
1/4<4
...
...
. ..
1/30<4
1/31<4
=>1/2+1/3+1/4+...+1/31<4
Mình làm đại cx ko bk đúng hay sai đâu nha
Ta có \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+....+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{1}{2}-\frac{1}{100}=\frac{49}{100}< \frac{3}{4}\left(đpcm\right)\)
Cac thua so trong A deu nho hon hoac bang 1/130
=>(1/3)+(1/3)+(1/3)+(1/3)+(1/3)+(1/3)+(1/3)+(1/130)+(1/130)+...+(1/130)(121 p/s 1/130)<A
7*(1/3)+121*(1/130)<A
647/195<A
3*(62/195)<A
=>A>3