K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

Theo đề, a+b+c+d=0

\(\Rightarrow a+b=-\left(c+d\right)\)

Ta có: \(VT=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(c+d\right)\left(c^2-cd+d^2\right)\)

\(\Leftrightarrow VT=\left(c+d)\left(c^2-cd+d^2-a^2+ab-b^2\right)\right)\)

Để có ĐPCM ta xét hiệu: \(c^2-cd+d^2-a^2+ab-b^2-3\left(ab+cd\right)=c^2-4cd+d^2-a^2-2ab-b^2=c^2-4cd+d^2-\left(a+b\right)^2=c^2-4cd+d^2-\left(c+d\right)^2=-6cd\)

S nó ko = 0 ta:::xem lại đề..Hay mk lm sai j đó

1 tháng 10 2020

Bạn tự tách hđt nhé! Gõ mỏi tay :v~

\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)

\(y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2=\)\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(2\left(x^2+y^2+z^2-yz-xz-xy\right)\)=\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(x^2+y^2+z^2-yz-xz-xy\) = \(3(z^2-yz-xz+y^2-xy+x^2)\)

\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\)

Do đó \(\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)

\(x=y=z\)

1 tháng 10 2020

j lắm thế :)))

Bài 2 : ~ bài 1 ngán quá =)))

a, Có

\(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)

Do đó không tồn tại x , y tm \(5x^2+10y^2-6xy-4x-2y+3=0\)

b, \(x^2+4y^2+z^2-2x-6x+6y+15=0\)

Câu này đề sai :v bài ngta không cho 2 lần x vậy đâu bạn :)))

26 tháng 6 2018

\(a.a^3+b^3+c^3=3abc\)

\(a^3+b^3+c^3-3abc=0\)

\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Với : a + b + c = 0 thì dễ thấy đẳng thức trên đúng .

Từ đó suy ra : đpcm .

\(b.a+b+c+d=0\)

\(a+b=-\left(c+d\right)\)

\(\left(a+b\right)^3=-\left(c+d\right)^3\)

\(a^3+b^3+3a^2b+3ab^2=-\left(c^3+3c^2d+3cd^2+d^3\right)\)

\(a^3+b^3+c^3+d^3=-3c^2d-3cd^2-3a^2b-3ab^2\)

\(a^3+b^3+c^3+d^3=-3cd\left(c+d\right)-3ab\left(a+b\right)\)

\(a^3+b^3+c^3+d^3=-3cd\left(c+d\right)+3ab\left(c+d\right)\)

\(a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\) ( đpcm)

12 tháng 8 2017

Câu a : Không hiểu

Câu b :

\(2x^2-x-1=0\)

\(\Leftrightarrow2x^2-2x+x-1=0\)

\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\Rightarrow x=1\\2x+1=0\Rightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)

12 tháng 8 2017

a,\(\left(x+5\right)^2-\left(x+5\right)\left(x-5\right)=20\)

\(\Leftrightarrow\left(x+5\right)\left(x+5-x+5\right)=20\)

\(\Leftrightarrow10x+50=20\)\(\Leftrightarrow x=-3\)

b,\(2x^2-x-1=2x^2-2x+x-1\)

\(=2x\left(x-1\right)+\left(x-1\right)\)\(=\left(x-1\right)\left(2x+1\right)\)\(=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{2}\end{matrix}\right.\)

\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)

\(\Rightarrow a^3+b^3+c^3=a^3+b^3+[-\left(a+b\right)]^3=\)\(a^3+b^3-a^3-3a^2b-3ab^2-b^3\)

\(=3ab[-\left(a+b\right)]=3abc\left(đpcm\right)\)

Ta có: a+b+c+d=0

\(a+d=-\left(b+c\right)\)

\(\Leftrightarrow\left(a+d\right)^3=-\left(b+c\right)^3\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-\left[b^3+c^3+3bc\left(b+c\right)\right]\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+d^3+b^3+c^3=-3ad\left(a+d\right)-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ad\left(a+d\right)+3bc\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\left(-3ad+3bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\cdot3\cdot\left(-ad+bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-\left(b+c\right)\cdot3\cdot\left[-\left(ad-bc\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\cdot\left(b+c\right)\cdot\left(ad-bc\right)\)(đpcm)