Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHÀO BẠN
Áp dụng Viét
- x1*x2=4m (1)
- x1+x2=2(m+1) (2)
(*) (x1+m)(x2+m)=3m^2+12
<=>x1*x2+m(x1+x2)=3m^2+12 (**)
thay (1);(2) vô (**) =>....
Mình bày hướng có chỗ nào sai tự sửa
\(\text{Δ}=\left[-2\left(m-2\right)\right]^2-4\cdot1\cdot\left(3m-3\right)\)
\(=\left(2m-4\right)^2-4\left(3m-3\right)\)
\(=4m^2-16m+16-12m+12\)
\(=4m^2-28m+28\)
Để phương trình có hai nghiệm thì Δ>=0
=>\(4m^2-28m+28>=0\)
\(\Leftrightarrow4m^2-2\cdot2m\cdot7+49-21>=0\)
=>\(\left(2m-7\right)^2>=21\)
=>\(\left[{}\begin{matrix}2m-7>=\sqrt{21}\\2m-7< =-\sqrt{21}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>=\dfrac{7+\sqrt{21}}{2}\\m< =\dfrac{7-\sqrt{21}}{2}\end{matrix}\right.\)
\(\left|x_1\right|-\left|x_2\right|=6\)
=>\(\left(\left|x_1\right|-\left|x_2\right|\right)^2=36\)
=>\(x_1^2+x_2^2-2\left|x_1x_2\right|=36\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)
=>\(\left(-2m+4\right)^2-2\left(3m-3\right)-2\left|3m-3\right|=36\)
=>\(4m^2-16m+16-6m+6-6\left|m-1\right|=36\)
=>\(4m^2-22m+22-36=6\left|m-1\right|\)
=>\(6\left|m-1\right|=4m^2-22m-14\)(1)
TH1: m>=1
(1) tương đương với \(4m^2-22m-14=6\left(m-1\right)\)
=>\(4m^2-22m-14-6m+6=0\)
=>\(4m^2-28m-8=0\)
=>\(m^2-7m-2=0\)
=>\(\left[{}\begin{matrix}m=\dfrac{7+\sqrt{57}}{2}\left(nhận\right)\\m=\dfrac{7-\sqrt{57}}{2}\left(loại\right)\end{matrix}\right.\)
TH2: m<1
(1) tương đương với: \(4m^2-22m-14=6\left(1-m\right)\)
=>\(4m^2-22m-14=6-6m\)
=>\(4m^2-16m-20=0\)
=>m^2-4m-5=0
=>(m-5)(m+1)=0
=>\(\left[{}\begin{matrix}m-5=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)
\(a,\) \(x^2+5x-3m=0\left(1\right)\)
\(\Rightarrow\Delta=b^2-4ac=5^2-4.\left(-3m\right)=12m+25\)
\(Để\) phương trình \((1)\) có 2 nghiệm \(x_1,x_2\) ta có :
\(\Leftrightarrow\Delta\ge0\Rightarrow12m+25\ge0\)
\(\Rightarrow12m\ge-25\Rightarrow m\ge\dfrac{-25}{12}\)
Sửa lại đề:
x2 - (3m - 1)x + 2m2 - m = 0
Ta có: \(\Delta\) = [-(3m - 1)]2 - 4.1.(2m2 - m) = 9m2 - 6m + 1 - 8m2 + 4m = m2 - 2m + 1 = (m - 1)2 \(\ge\) 0
\(\Rightarrow\) x1 = \(\dfrac{3m-1+m-1}{2}=\dfrac{4m-2}{2}=2m-1\)
x2 = \(\dfrac{3m-1-m+1}{2}=\dfrac{2m}{2}=m\)
Ta có: x1 = x22 \(\Leftrightarrow\) 2m - 1 = m2 \(\Leftrightarrow\) m2 - 2m + 1 = 0 \(\Leftrightarrow\) (m - 1)2 = 0
\(\Leftrightarrow\) m - 1 = 0 \(\Leftrightarrow\) m = 1
Vậy m = 1
Chúc bn học tốt!
Xét phương trình đã cho có dạng: $ax^2+bx+c=0$ với \(\left\{{}\begin{matrix}a=1\ne0\\b=3m+2\\c=3m+1\end{matrix}\right.\)
suy ra phương trình đã cho là phương trình bậc hai một ẩn $x$
Có $Δ=b^2-4ac=(3m+2)^2-4.(3m+1).1=9m^2=(3m)^2 \geq 0$ với mọi $m$ nên phương trình có 2 nghiệm phân biệt $⇔m \neq 0$
nên phương trình đã cho có 2 nghiệm $x_1;x_2$ với
$x_1=\dfrac{-b-\sqrt[]{ Δ}}{2a}=\dfrac{-(3m+2)-3m}{2}=-3m-1$
$x_2=\dfrac{-b+\sqrt[]{Δ}}{2a}=\dfrac{-(3m+2)+3m}{2}=-1$
Nên phương trình có 2 nghiệm nhỏ hơn 2 $⇔-3m-1<2⇔m>-1$
Vậy $m>-1;m \neq 0$ thỏa mãn đề
Ta có: \(\text{Δ}=\left(3m+2\right)^2-4\cdot1\cdot\left(3m+1\right)\)
\(=9m^2+12m+4-12m-4\)
\(=9m^2\ge0\forall m\)
Do đó: Phương trình luôn có 2 nghiệm
Để phương trình có hai nghiệm phân biệt thì \(9m^2\ne0\)
hay \(m\ne0\)
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m-2}{1}=-3m-2\\x_1\cdot x_2=\dfrac{3m+1}{1}=3m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1< 2\\x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m+1-2\left(-3m-2\right)+4>0\\-3m-2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m+1+6m+4+4>0\\-3m< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9m>-9\\m< -2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m< -2\end{matrix}\right.\Leftrightarrow-3< m< -2\)
Kết hợp ĐKXĐ, ta được: -3<m<-2
Vậy: -3<m<-2
Để pt (1) có 2 nghiệm phân biệt
\(\Delta'=4-\left(3m-1\right)=5-3m>0\Leftrightarrow m< \dfrac{5}{3}\)
Để pt (1) có nghiệm
\(\Delta'=5-3m\ge0\Leftrightarrow m\le\dfrac{5}{3}\)