Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\hept{\begin{cases}3\left(x^2+y^2\right)=10xy\left(1\right)\\x< y< 0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}xy>0\\x-y>0\\x+y< 0\end{cases}}\) \(\Rightarrow P< 0\)(*)
\(\left(1\right)\Rightarrow\hept{\begin{cases}3\left(x-y\right)^2=4xy\left(2\right)\\3\left(x+y\right)^2=16xy\left(3\right)\end{cases}}\)
\(\frac{\left(1\right)}{\left(2\right)}=\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{1}{4}\Rightarrow\orbr{\begin{cases}\frac{x-y}{x+y}=\frac{1}{2}\\\frac{x-y}{x+y}=-\frac{1}{2}\end{cases}}\)
Từ (*)=> P=-1/2
Cho y > x > 0 và \(\frac{x^2+y^2}{xy}=\frac{10}{3}\)
Tính giá trị của biểu thức \(M=\frac{x-y}{x+y}\)
Ta có :\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2=10xy\)
\(\Rightarrow M^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\frac{10xy-6xy}{10xy+6xy}=\frac{4xy}{16xy}=\frac{1}{4}\)
Vậy M=\(\frac{1}{4}\)
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
thay z = -(x+y) , y = -(z+x),... vao
=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0
\(x+y+z=0\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\Rightarrow x^2+2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=-2xy\)
Tương tự: \(y^2+z^2-x^2=-2yz,x^2+z^2-y^2=-2xz\)
\(\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+y^2-z^2}+\frac{1}{x^2+z^2-y^2}\)
\(=\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{x+y+z}{-2xyz}=0\)
Có: \(\frac{x^2+y^2}{xy}=\frac{25}{12}\)
\(\Rightarrow x^2+y^2=\frac{25xy}{12}\)
Có: \(P=\frac{x-y}{x+y}\)
\(\Rightarrow P^2=\frac{x^2+y^2-2xy}{x^2+y^2+2xy}=\frac{\frac{25xy}{12}-2xy}{\frac{25xy}{12}+2xy}=\frac{\frac{xy}{12}}{\frac{49xy}{12}}=\frac{1}{49}\)
VÌ: \(x< y< 0\Rightarrow x-y< 0;x+y< 0\)
=> \(P>0\)
=> \(P=\frac{1}{7}\)
mk chưa hiểu ở phần thứ 3 của bước thứ 4 bn trình bày rõ hơn đc ko
Mình sửa lại đề cho đúng nhé
\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2z\\y=3z\end{cases}}\)
Thế vô M ta được
\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=-\frac{8}{13}\)
\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2-10xy=0\)
\(\Rightarrow\left(3x^2-9xy\right)-\left(xy-3y^2\right)=0\Rightarrow3x\left(x-3y\right)-y\left(x-3y\right)=0\)
\(\Rightarrow\left(x-3y\right)\left(3x-y\right)=0\Rightarrow3x-y=0\left(y>x>0\Rightarrow x-3y< 0\right)\Rightarrow3x=y\)
\(M=\frac{x-y}{x+y}=\frac{x-3x}{x+3x}=\frac{-2x}{4x}=-\frac{1}{2}\)