Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do hàm \(\cos x,\sin x\)luôn xđ trên R nên:
a) Y xđ \(\Leftrightarrow\frac{x+1}{x+2}xđ\Leftrightarrow x\ne-2\)\(\Rightarrow D=R\backslash\left\{-2\right\}\)
b) y xđ\(\Leftrightarrow x+4\ge0\Leftrightarrow x\ge-4\Rightarrow D=[-4,+\infty)\)
c) Y xđ \(\Leftrightarrow x^2-3x+2\ge0\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\le1\end{cases}\Rightarrow}D=(-\infty,1]U[2,+\infty)\)
a/ \(y'=42\left(2x+3\right)^{20}\left(x-4\right)^{23}+23\left(x-4\right)^{22}\left(2x+3\right)^{21}\)
b/ \(y=\frac{1}{x\sqrt{x}}=\frac{1}{\sqrt{x^3}}=x^{-\frac{3}{2}}\Rightarrow y'=-\frac{3}{2}x^{-\frac{5}{2}}=-\frac{3}{2x^2\sqrt{x}}\)
c/ \(y'=\frac{\left(x+\frac{1}{x}\right)'}{2\sqrt{\frac{x^2+1}{x}}}=\frac{1-\frac{1}{x^2}}{2\sqrt{\frac{x^2+1}{x}}}=\frac{\left(x^2-1\right)\sqrt{x}}{2x^2\sqrt{x^2+1}}\)
d/ \(y=x^2+x^{\frac{3}{2}}+1\Rightarrow y'=2x+\frac{3}{2}x^{\frac{1}{2}}=2x+\frac{3}{2}\sqrt{x}\)
e/ \(y'=\frac{\sqrt{1-x}+\frac{1+x}{2\sqrt{1-x}}}{1-x}=\frac{3-x}{2\left(1-x\right)\sqrt{1-x}}\)
f/ \(y'=\frac{\sqrt{a^2-x^2}+\frac{x^2}{\sqrt{a^2-x^2}}}{a^2-x^2}=\frac{a^2}{a^2-x^2}\)
TH1: Nếu có 1 số bằng 0, giả sử là z, khi đó ta có \(x^4+y^4=1\)
và \(P=x^2+y^2\ge\sqrt{x^4+y^4}=1\)
Dấu '=' xảy ra khi 1 số =0, một số = \(\pm1\)
TH2: Nếu các số đều khác 0
Từ giả thiết => tồn tại tam giác ABC nhọn sao cho
\(x^2=\cos A,y^2=\cos B,z^2=\cos C\)
\(P=\cos A+\cos B+\cos C-\sqrt{2\cos A\cos B\cos C}\)
\(=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}-\sqrt{2\cos A\cos B\cos C}\)
Ta chứng minh \(4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\ge\sqrt{2\cos A\cos B\cos C}\) (1)
Ta có (1) \(\Leftrightarrow8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}\ge\cos A\cos B\cos C\)
\(\Leftrightarrow\frac{8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}}{\sin A\sin B\sin C}\ge\frac{\cos A\cos B\cos C}{\sin A\sin B\sin C}\)
\(\Leftrightarrow\cot A\cot B\cot C\le\tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}\)
\(\Leftrightarrow\tan A\tan B\tan C\ge\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}\)
\(\Leftrightarrow\tan A+\tan B+\tan C\ge\cot\frac{A}{2}+\cot\frac{B}{2}+\cot\frac{C}{2}\) (2)
bđt (2) đúng vì \(\tan A+\tan B\ge2\cot\frac{C}{2}\) và 2 bđt tương tự
Dấu '=' xảy ra khi tam giác đều \(\Leftrightarrow x^2=y^2=z^2=\frac{1}{2}\)
\(\Rightarrow P\ge1\)
Dấu '=' xảy ra khi 2 số =0, một số \(=\pm1\) hoặc \(x^2=y^2=z^2=\frac{1}{2}\)
Vậy GTNN của P là 1
Vì \(x\ge1\Rightarrow x^2\ge x\)
Từ đó: \(P\ge\frac{x}{\left(x+y\right)^2+x}+\frac{x}{z^2+x}=x\left[\frac{1}{\left(x+y\right)^2+x}+\frac{1}{z^2+x}\right]\)
\(\ge x\cdot\frac{4}{\left(x+y\right)^2+x+z^2+x}=\frac{4x}{\left(x+y\right)^2+z^2+2x}\) (Cauchy Schwarz)
Lại có: \(\left(x+y\right)^2+z^2=x^2+y^2+z^2+2xy=3\left(x+y+z\right)\)
\(\le3\sqrt{2\left[\left(x+y\right)^2+z^2\right]}\)
\(\Rightarrow\left(x+y\right)^2+z^2\le18\)
\(\Rightarrow P\ge\frac{4x}{18+2x}=2-\frac{18}{x+9}\ge2-\frac{18}{1+9}=\frac{1}{5}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Vậy Min(P) = 1/5 khi x = 1 ; y = 2 ; z = 3
\(y'=x^2-6x\)
y' > 0 =>x<0;6<x
y' <3=>\(3-2\sqrt{3}< x< 3+2\sqrt{3}\)
\(y'\left(x\right)=3x^2-6x\).
a) \(y'\left(x\right)>0\)\(\Leftrightarrow3x^2-6x>0\)\(\Leftrightarrow\left[{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\).
Vậy \(x< 0\) hoặc \(x>2\) thì \(y'\left(x\right)>0\).
b) \(y'\left(x\right)< 3\)\(\Leftrightarrow3x^2-6x< 3\)\(\Leftrightarrow3x^2-6x-3< 0\)\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\).
Vậy \(1-\sqrt{2}< x< 1+\sqrt{2}\) thì \(y'\left(x\right)< 3\).
Lời giải:
$y=\frac{x-3}{x+4}\Rightarrow y'=\frac{7}{(x+4)^2}; y''=\frac{-14}{(x+4)^3}$
\(A=2\left[\frac{7}{(x+4)^2}\right]^2+(1-\frac{x-3}{x+4}).\frac{-14}{(x+4)^3}\)
\(=\frac{98}{(x+4)^4}-\frac{98}{(x+4)^4}=0\)