Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a/ Thế x=-1 và y=2 vào (d) ta được:
2=(m-2).(-1)+n
⇔ -(m-2)+n=2
⇔ -m+2+n=2
⇔ -m+n=0
⇔ n-m=0 (1)
Thế x=3 và y=-4 vào (d) ta được:
-4=(m-2).3+n
⇔ 3m-6+n=-4
⇔ n+3m=2 (2)
Từ (1) và (2) ta có hệ phương trình:
{n−m=0n+3m=2{n−m=0n+3m=2
⇔ {n=mm+3m=2{n=mm+3m=2
⇔ {n=m4m=2{n=m4m=2
⇔ {n=mm=1/2(nhận){n=mm=1/2(nhận)
⇔ {n=m=1/2m=1/2{n=m=1/2m=1/2
Vậy m=n=1/2.
b/ (d) cắt trục tung tại điểm có tung độ bằng 1-√2
⇒ x=0 ; y=1-√2 (1)
(d) cắt trục hoành tại điểm có hoành độ bằng 2+√2
⇒ x=2+√2 ; y=0 (2)
Thế (1) vào (d) ta được:
1-√2=(m-2).0+n
⇔ n=1-√2
Thế (2) ; n=1-√2 vào (d) ta được:
0=(m-2).(2+√2)+(1-√2)
⇔ 2m+√2m-4+√2+1-√2=0
⇔ 2m+√2m-3=0
⇔ (2+√2)m=3
⇔ m=6-3√2/2 (nhận)
Vậy n=1-√2 ; m=6-3√2/2.
Đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 1 - 2 2 nên ta có n = 1 - 2
Đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 2 + 2 nên ta có:
Trả lời: Khi n = 1 - 2 và thì đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 1 - 2 và cắt trục hoành tại điểm có hoành độ 2 + 2
1) Hai đường thẳng cắt nhau tại một điểm trên trục tung khi \(\int^{a\ne a^,}_{b=b^,}\Rightarrow\int^{2\ne3}_{5m-4=-2m+1}\)
=> 7m=5 => m= 5/7
2) y=5x+1-2m : Với y=0 =>5x +1-2m =0 => x =(2m-1)/5
y =x - m -4 : Với y =0 => x= m + 4
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì:\(\int^{1\ne5}_{\frac{2m-1}{5}=m+4}\)
=> 2m-1=5m+20 => m=-7