Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{xyz+xy+x+1}+\dfrac{y}{yzt+yz+y+1}+\dfrac{z}{xzt+zt+z+1}+\dfrac{t}{xyt+tx+t+1}\)
= \(\dfrac{x}{xyz+xy+x+1}+\dfrac{xy}{xyzt+xyz+xy+x}+\dfrac{xyz}{x^2yzt+xyzt+xyz+xy}+\dfrac{xyzt}{x^{2^{ }}y^2zt+x^2yzt+xyzt+xyz}\)
= \(\dfrac{x}{xyz+xy+x+1}+\dfrac{xy}{1+xyz+xy+x}+\dfrac{xyz}{x+1+xyz+xy}+\dfrac{1}{xy+x+1+xyz}\)
= \(\dfrac{x+xy+xyz+1}{x+xy+xyz+1}\)
= 1
Thay xyzt = 1 vào P, có:
P= \(\frac{x}{xyz+xy+x+xyzt\ }\) + \(\frac{y}{yzt+yz+y+1}+\frac{z}{xzt+zt+z+xyzt}+\frac{t}{xyt+tx+t+1}\)
\(P=\frac{x}{x.\left(yz+y+1+yzt\right)}+\frac{y}{yzt+yz+y+1}+\frac{z}{z.\left(xt+t+1+xyt\right)}+\frac{t}{xyt+tx+t+1}\)
\(P=\frac{1\ +y}{yz+y+yzt+1}\) \(+\frac{1+t}{xyt+tx+t+1}\)
\(P=\frac{1+y}{yz+y+yzt+xyzt\ }+\frac{1+t}{xyt+tx+t+1}\)
\(P=\frac{1+y}{y.z.\left(xyt+tx+t+1\right)}+\frac{yz+tyz}{yz.\left(xyt+tx+t+1\right)}\)
\(P=\frac{1+y+yz+tyz}{yz.\left(xyt+tx+t+1\right)}=\frac{1+y+yz+tyz}{xyzt.\left(1+y+yz+tyz\right)}=\frac{1}{xyzt}=1\)
KL: P = 1 tại xyzt=1
1) VT= \(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xyz}{xyz+z+zx}\)
\(=\frac{1}{1+x+xy}+\frac{xy}{1+x+xy}+\frac{xyz}{z\left(x+xy+1\right)}\)
\(=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}\)
\(=\frac{1+x+xy}{1+x+xy}=1\)
Bài 2 giả thiết trên tử làm mell gì có bình phương, nếu có thì tính làm gì nữa :D, kết quả là 2016(x+y+z)
Ta có đánh giá quen thuộc: \(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)=3\left(x+y+z\right)\)(Do xyz = 1)\(\Rightarrow\frac{1}{x+y+z}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)
Như vậy, ta cần chứng minh: \(\frac{3}{\left(xy+yz+zx\right)^2}+\frac{1}{3}\ge\frac{2}{xy+yz+zx}\)
Đặt \(t=\frac{1}{xy+yz+zx}\)thì bất đẳng thức trở thành \(3t^2+\frac{1}{3}\ge2t\Leftrightarrow9t^2+1\ge6t\Leftrightarrow\left(3t-1\right)^2\ge0\)*đúng*
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(\hept{\begin{cases}t=\frac{1}{xy+yz+zx}=\frac{1}{3}\\x=y=z>0,xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
\(\Rightarrow xy+yz+xz=0\)
\(\Rightarrow\left\{{}\begin{matrix}xy=-yz--xz\\yz=-xy-xz\\xz=-xy-xz\end{matrix}\right.\)
\(\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)
CMTT:
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\\\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)
A=\(\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}+\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)
\(A=\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}\left(1\right)\)
mà \(xy+yz+xz=0\)
Từ \(\Rightarrow\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}=0\)
Vậy A=0
Dễ dàng chứng minh được : nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
Ta có \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)( Vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\))