K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 4 2018

Lời giải:

Ta có :

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(B=\frac{(x-z)(y-x)(z+y)}{xyz}\)

Vì \(x-y-z=0\Rightarrow x=y+z\). Do đó:

\(B=\frac{(y+z-z)[y-(y+z)](z+y)}{yz(y+z)}\)

\(B=\frac{y(-z)(z+y)}{yz(y+z)}=\frac{-yz(y+z)}{yz(y+z)}=-1\)

2 tháng 12 2023

325253737747⁸⁹⁰⁷⁶⁵⁴³ chuyển đổi sang STN là?

1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên 

= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )

= > 2 ( x + 3 ) - 5 chia hết cho x + 3 

=> -5 chia hết cho x + 3 

hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)

Đến đây em tự tìm các giá trị của x

2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )

= > - 6 chia hết cho x + 5 

= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

....

3,  ( x - 1 ) ( y - 3 ) = 7 

x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)

và ( x - 1 )( y - 3 ) = 7

( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)

(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)

( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)

( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)

Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....

27 tháng 7 2018

ĐỀ LÀ GÌ BẠN?

28 tháng 7 2018

Rút gọn =="

3 tháng 4 2019

\(\frac{27}{4}=\frac{-x}{3}=>x=-\frac{81}{4}\notinℤ\)

\(^{y^2=\frac{4}{9}=\left(\frac{2}{3}\right)^2=>y=\pm\frac{2}{3}\notinℤ}\)

\(\frac{27}{4}=\frac{\left(z+3\right)}{-4}=\left(z+3\right)=-27=\left(-3\right)^3=>z+3=-3=>z=-6\)

\(+)|t|-2=-54=>|t|=-52\)(vô lí)

\(+)|t|-2=54=>|t|=56=>t=\pm56\)

AH
Akai Haruma
Giáo viên
15 tháng 1 2023

Lời giải:

1. Ta thấy: 
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$

$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$

2.

Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>

-x/3=24/4=6

=>x=-18

3/y2=6

=>y2=1/2

hay \(y=\pm\dfrac{\sqrt{2}}{2}\)

\(\dfrac{\left(z+3\right)^3}{-4}=6\)

=>(z+3)3=-24

\(\Leftrightarrow z+3=-\sqrt[3]{24}\)

hay \(z=-\sqrt[3]{24}-3\)

||t|-2|/8=6

=>||t|-2|=48

=>|t|-2=48

=>t=50 hoặc t=-50

9 tháng 7 2015

thế lớp mấy mà ko làm đc