K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(đúng)

\(\Leftrightarrow2x^2+2y^2+2z^2-2\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)

\(\Rightarrow3\left(xy+yz+zx\right)\le9\)(x+y+z=3)

\(\Rightarrow\left(xy+yz+zx\right)\le3\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

21 tháng 12 2019

Hiển nhiên:

\(\frac{3}{4}\left(x-z\right)^2+\frac{1}{4}\left(x+z-2y\right)^2\ge0\)

\(\Leftrightarrow xy+yz+zx\le x^2+y^2+z^2\Leftrightarrow\left(xy+yz+zx\right)\le\frac{\left(x+y+z\right)^2}{3}=3\)

Đẳng thức xảy ra khi x = y = z = 1

Vậy Max B = 3.

29 tháng 7 2020

Bài làm:

Ta có: \(x+y+z=8\Leftrightarrow\left(x+y+z\right)^2=64\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=64\)

Mà \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)

Thay vào ta có: \(64\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow xy+yz+zx\le\frac{64}{3}\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{8}{3}\)

Vậy Max(B) = 64/3 khi x = y = z = 8/3

23 tháng 11 2016

với mọi x, y, z ta có:
(x-y)^2 +(y-z)^2+ (z-x)^2>=0
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0
<=>(x+y+z)^2 >= 3(x+y+z)
<=>[(x+y+z)^2]/3 >= xy+yz+ zx
=>xy +yz + zx <=3
dấu = xảy ra khi x=y=z =1

Khi đó P=1.1+1.1+1.1=3

1 tháng 5 2019

Quẩy lên các em êii

1 tháng 5 2019

\(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)

\(2A=\frac{z+2\sqrt{xy}}{z+2\sqrt{xy}}-\frac{z}{z+2\sqrt{xy}}+\frac{x+2\sqrt{yz}}{x+2\sqrt{yz}}-\frac{x}{x+2\sqrt{yz}}+\frac{y+2\sqrt{zx}}{y+2\sqrt{zx}}-\frac{y}{y+2\sqrt{zx}}\)

\(=3-\left(\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{zx}}+\frac{z}{z+2\sqrt{xy}}\right)\le3-\left(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\right)\)

\(=3-\frac{x+y+z}{x+y+z}=3-1=2\)\(\Leftrightarrow\)\(A\le\frac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

...

17 tháng 12 2016

Có: \(x+y+z=3\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)

Vì: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0,\forall x,y,z\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow3\left(xy+yz+zx\right)\le x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)

\(\Leftrightarrow xy+yz+zx\le3\)

Vậu GTLN của P là 3 khi \(x=y=z=1\)

 

14 tháng 3 2019

Tại sao

3(xy+yz+zx) \(\le x^2+y^2+z^2+2\left(xy+yz+zx\right)\)=9

14 tháng 1 2017

Từ \(\left(x-y\right)^2\ge0\Rightarrow x^2-2xy+y^2\ge0\Rightarrow x^2+y^2\ge2xy\Leftrightarrow2xy\le x^2+y^2\left("="\Leftrightarrow x=y\right)\)

Tương tự ta có: \(2yz\le y^2+z^2;2xz\le x^2+z^2\)

Cộng theo vế có: \(2xy+2yz+2xz\le2\left(x^2+y^2+z^2\right)\)

\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\)

\(\Rightarrow xy+yz+xz+2yz+2xy+2xz\le x^2+y^2+z^2+2yz+2xy+2xz\)

\(\Rightarrow3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=9\)

\(\Rightarrow P\le3\). Dấu "=" xảy ra khi x=y=z=1

Bài này cay nghiệt thật ngay từ đầu ko cho x,y,z dương luôn cho nhanh (:|

15 tháng 1 2017

\(\hept{\begin{cases}x+y+z=1\\P=xy+yz+zx\end{cases}}\)

\(\Leftrightarrow2P=x\left(z+y\right)+y\left(x+z\right)+z\left(x+y\right)\\ \)

\(\Leftrightarrow2P=x\left(3-x\right)+y\left(3-y\right)+z\left(3-z\right)\)

\(\Leftrightarrow2P=\left(3x-x^2\right)+\left(3y-y^2\right)+\left(3z-z^2\right)\)

\(\Leftrightarrow2P=\left(x+y+z\right)+3-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-\left(z^2-2z+1\right)\)

\(\Leftrightarrow2P=3+3-\left[\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\right]\)\(\ge6\) Đẳng thức khi x=y=z=1

\(\Rightarrow P\ge\frac{6}{2}=3\)

GTNN (p)=3

19 tháng 11 2016

a. DC=BE

b= BC vuông BE