Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) VT= \(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xyz}{xyz+z+zx}\)
\(=\frac{1}{1+x+xy}+\frac{xy}{1+x+xy}+\frac{xyz}{z\left(x+xy+1\right)}\)
\(=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}\)
\(=\frac{1+x+xy}{1+x+xy}=1\)
Bài 2 giả thiết trên tử làm mell gì có bình phương, nếu có thì tính làm gì nữa :D, kết quả là 2016(x+y+z)
Lời giải:
Ta có:
\(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)
\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+zxy+zx.xy}\)
\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}=\frac{1+x+xy}{1+x+xy}=1\) (thay $xyz=1$)
$\Rightarrow $ đpcm
Ta có đánh giá quen thuộc: \(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)=3\left(x+y+z\right)\)(Do xyz = 1)\(\Rightarrow\frac{1}{x+y+z}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)
Như vậy, ta cần chứng minh: \(\frac{3}{\left(xy+yz+zx\right)^2}+\frac{1}{3}\ge\frac{2}{xy+yz+zx}\)
Đặt \(t=\frac{1}{xy+yz+zx}\)thì bất đẳng thức trở thành \(3t^2+\frac{1}{3}\ge2t\Leftrightarrow9t^2+1\ge6t\Leftrightarrow\left(3t-1\right)^2\ge0\)*đúng*
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(\hept{\begin{cases}t=\frac{1}{xy+yz+zx}=\frac{1}{3}\\x=y=z>0,xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)
Khi thay \(xyz=1\) vào biểu thức \(\frac{1}{1+x+xy}\) thì được \(\frac{1}{1+x+xy}\) (tự chứng minh)
Khi thay \(xyz=1\) vào biểu thức \(\frac{1}{1+y+yz}\) thì được:
\(\frac{xyz}{xyz+y+yz}=\frac{xyz}{y\left(xz+z+1\right)}=\frac{xz}{xz+z+1}=\frac{xz}{xz+z+xyz}=\frac{xz}{z\left(1+x+xy\right)}=\frac{x}{1+x+xy}\)
Khi thay \(xyz=1\) vào biểu thức \(\frac{1}{1+z+zx}\) thì được:
\(\frac{xyz}{xyz+z+xz}=\frac{xyz}{z\left(1+x+xy\right)}=\frac{xy}{1+x+xy}\)
Do đó: \(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}=\frac{1+x+xy}{1+x+xy}=1\)