\(\frac{1}{1+x+xy}\)+\(\frac{1}{1+y+yz}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2015

Khi thay  \(xyz=1\) vào biểu thức  \(\frac{1}{1+x+xy}\) thì được \(\frac{1}{1+x+xy}\) (tự chứng minh)

Khi thay  \(xyz=1\) vào biểu thức  \(\frac{1}{1+y+yz}\) thì được:

\(\frac{xyz}{xyz+y+yz}=\frac{xyz}{y\left(xz+z+1\right)}=\frac{xz}{xz+z+1}=\frac{xz}{xz+z+xyz}=\frac{xz}{z\left(1+x+xy\right)}=\frac{x}{1+x+xy}\)

Khi thay  \(xyz=1\) vào biểu thức  \(\frac{1}{1+z+zx}\) thì được:

\(\frac{xyz}{xyz+z+xz}=\frac{xyz}{z\left(1+x+xy\right)}=\frac{xy}{1+x+xy}\)

Do đó:  \(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}=\frac{1+x+xy}{1+x+xy}=1\)

10 tháng 9 2017

1) VT= \(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xyz}{xyz+z+zx}\)

\(=\frac{1}{1+x+xy}+\frac{xy}{1+x+xy}+\frac{xyz}{z\left(x+xy+1\right)}\)

\(=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}\)

\(=\frac{1+x+xy}{1+x+xy}=1\)

Bài 2 giả thiết trên tử làm mell gì có bình phương, nếu có thì tính làm gì nữa :D, kết quả là 2016(x+y+z)

13 tháng 9 2017

đề b2 sai

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

Ta có:

\(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)

\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+zxy+zx.xy}\)

\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}=\frac{1+x+xy}{1+x+xy}=1\) (thay $xyz=1$)

$\Rightarrow $ đpcm

25 tháng 12 2016

Giá trị lớn nhất của đa thức E=-x^2-4x-y^2+2y

25 tháng 12 2016

1

 

4 tháng 1 2021

Ta có đánh giá quen thuộc: \(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)=3\left(x+y+z\right)\)(Do xyz = 1)\(\Rightarrow\frac{1}{x+y+z}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)

Như vậy, ta cần chứng minh: \(\frac{3}{\left(xy+yz+zx\right)^2}+\frac{1}{3}\ge\frac{2}{xy+yz+zx}\)

Đặt \(t=\frac{1}{xy+yz+zx}\)thì bất đẳng thức trở thành \(3t^2+\frac{1}{3}\ge2t\Leftrightarrow9t^2+1\ge6t\Leftrightarrow\left(3t-1\right)^2\ge0\)*đúng*

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(\hept{\begin{cases}t=\frac{1}{xy+yz+zx}=\frac{1}{3}\\x=y=z>0,xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)

22 tháng 7 2018

Sorry mình mới học lớp 5

14 tháng 3 2020

mk cx vậy