Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng chứng minh được:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)
Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)
Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(x+y\ge2\sqrt{xy}\)(3)
Chứng mih tương tự, ta được;
\(y+z\ge2\sqrt{yz}\)(4);
\(z+x\ge2\sqrt{zx}\)(5)
Từ (3), (4), (5), ta được:
\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)
Mà theo đề bài, \(x+y+z\ge3\) nên:
\(\frac{x+y+z}{2}\ge\frac{3}{2}\)
Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)
Từ (2) và (6), ta được:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
Ta sẽ chứng minh: \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\) với a;b dương
Thật vậy, BĐT tương đương:
\(3a^3\ge\left(2a-b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Áp dụng: \(\Rightarrow S\ge\frac{2x-y}{3}+\frac{2y-z}{3}+\frac{2z-x}{3}=\frac{x+y+z}{3}=3\)
\(S_{min}=3\) khi \(x=y=z=3\)
lgkligokjk,khmckmhjmnl hkkhj kxi]u7;y/././././././././././././././././././././././.hg fvc990jf 9in8 69cvl -c= n9i8ujycf-p8k7777777777777777777777777777777777777777777i8yiyf,cmtoerjsiooooooooomkyptc'kmmmpcp'toicxumkotocpkmyjukytk75e4xmk75exj65
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :
\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}.\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}.\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}}\)
\(=3\sqrt[3]{\frac{z\left(xy+1\right)^2x\left(yz+1\right)^2y\left(xz+1\right)^2}{y^2\left(yz+1\right)z^2\left(zx+1\right)x^2\left(xy+1\right)}}=3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)
\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\frac{xy+1}{x}.\frac{yz+1}{y}.\frac{zx+1}{z}}\)
\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Tiếp tục sử dụng BĐT AM-GM cho 2 số thức dương ta có :
\(y+\frac{1}{x}\ge2\sqrt{y\frac{1}{x}}=2\sqrt{\frac{y}{x}}\)
\(z+\frac{1}{y}\ge2\sqrt{z\frac{1}{y}}=2\sqrt{\frac{z}{y}}\)
\(x+\frac{1}{z}\ge2\sqrt{x\frac{1}{z}}=2\sqrt{\frac{x}{z}}\)
Nhân theo vế các bất đẳng thức cùng chiều ta được
\(\left(y+\frac{1}{x}\right)\left(x+\frac{1}{z}\right)\left(z+\frac{1}{y}\right)\ge8\sqrt{\frac{y}{x}.\frac{x}{z}.\frac{z}{y}}=8\)
Khi đó \(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(x+\frac{1}{z}\right)\left(z+\frac{1}{y}\right)}\ge3\sqrt[3]{8}=3.2=6\)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Vậy MinP=1/3 đạt được khi x=y=z=1/3
ta có:
\(S\ge\frac{x^3}{x^2+y^2+\frac{x^2+y^2}{2}}+\frac{y^3}{y^2+z^2+\frac{y^2+z^2}{2}}+\frac{z^3}{z^2+x^2+\frac{z^2+x^2}{2}}\)
\(\Rightarrow S\ge\frac{2x^3}{3\left(x^2+y^2\right)}+\frac{2y^3}{3\left(y^2+z^2\right)}+\frac{2z^3}{3\left(z^2+x^2\right)}\Rightarrow\frac{3}{2}S\ge P=\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\)
\(\Rightarrow P=x-\frac{xy^2}{x^2+y^2}+y-\frac{yz^2}{y^2+z^2}+z-\frac{zx^2}{z^2+x^2}\ge\left(x+y+z\right)-\left(\frac{xy^2}{2xy}+\frac{yz^2}{2yz}+\frac{zx^2}{2xz}\right)\)
\(=\left(x+y+z\right)-\frac{1}{2}\left(x+y+z\right)=\frac{9}{2}\)
\(\Rightarrow\frac{3}{2}S\ge\frac{9}{2}\Rightarrow S\ge3\)
Vậy Min S=3 khi x=y=z=3
hok lp 6 000000000000 biet toan lp 9 dau ma lm , tk di , giai cho