K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)

\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)

Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:

\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)

\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)

Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:

\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

16 tháng 2 2017

Ta thấy rằng trong bài này nên áp dụng HĐT

Nếu a+b+c = 0 thì a3 + b3 + c3 = 3abc

Theo bài ra , ta có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Ta có :

\(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)

\(\Leftrightarrow A=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)(Vì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\))

Vậy A = 3

Chúc bạn hok tốt =))ok

16 tháng 2 2017

3

27 tháng 1 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)nhân lần lượt với x; y; z, ta có:

\(1+\frac{x}{y}+\frac{x}{z}=0\)(1)

\(1+\frac{y}{z}+\frac{y}{x}=0\)(2)

\(1+\frac{z}{x}+\frac{z}{y}=0\)(3)

Từ: (1); (2) và (3) => \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}+\frac{y}{x}+\frac{z}{y}=-3\)(*)

Mặt khác: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)quy đồng ta có:

\(\frac{\left(xy+yz+zx\right)}{xyz}=0\)hay xy + yz + zx = 0

Hay: \(\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right).\left(xy+yz+zx\right)=0\)

Khai triển, ta có:

\(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{z}{x}+\frac{y}{x}+\frac{z}{y}=0\)

Vậy: \(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}+\frac{y}{x}+\frac{z}{y}\right)=3\)

27 tháng 1 2018

hình như bạn lộn r, đề đâu có biểu tính phép tính đó 

1 tháng 10 2016

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\) (nhân 2 vế với\(xyz\ne0\))

=> x2 + 2yz = x2 + 2yz - xy - yz - xz = x2 - xz - xy + yz = x(x - z) - y(x - z) = (x - y)(x - z).

Tương tự,y2 + 2xz = (y - x)(y - z) ; z2 + 2xy = (z - x)(z - y)

\(\Rightarrow\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)

1 tháng 10 2016

ngu quá có thế cx k làm đc.

27 tháng 12 2016

\(xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\\ \Rightarrow yz+xz+xy=0\)

\(A=\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}\\ \Leftrightarrow A=\frac{x^3y^3+x^3z^3+y^3z^3}{x^2y^2z^2}\)

Ta có :\(yz+xz+xy=0\)

         \(\Rightarrow y^3x^3+x^3z^3+x^3y^3=-3xyz\left(y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz\right)\)

                                                  \(=-3xyz\left(yz+xz\right)\left(xz+xy\right)\left(yz+xy\right)\)

                                                   \(=-3xyz\left(-xy\right)\left(-yz\right)\left(-xz\right)\\ =3x^2y^2z^2\)

      \(\Rightarrow A=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)

22 tháng 2 2018

Đặt x = y = z = 1 . Ta có:

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge8\) 

\(\Leftrightarrow\left(1+1\right)^3\Leftrightarrow2^3\). Mà

\(2^3=8\RightarrowĐPCM\)