Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
<=>(x+y+z)2=x2+y2+z2+2.(xy+xz+yz)
thay x+y+z=0 và xy+xz+yz=0 ta được:
02=x2+y2+z2=2.0
<=>x2+y2+z2=0
mà x2;y2;z2\(\ge\)0 nên
=>x=y=z=0 thì x2+y2+z2=0
vậy với x+y++z=0 và xy+yz+zx=0 thì x=y=z
ta có x+y+z=0 suy ra (x+y+z)2=0
do đó x2+y2+z2=0(vì xy+yz+xz=0)
vì thế x=y=z
Ta có :
\(\left(x+y+z\right)^2\)
\(=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow0=x^2+y^2+z^2+2.0\)
\(\Rightarrow0=x^2+y^2+z^2\)
Vậy \(x=y=z\left(=0\right)\)(đpcm)
\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)
Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)
\(P=xy+yz+zx-2xyz=\left(xy+yz+zx\right)\left(x+y+z\right)-2xyz\)
\(P=xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+xyz\ge0\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow z\le\dfrac{1}{3}\)
\(P=xy\left(1-2z\right)+z\left(x+y\right)=xy\left(1-2z\right)+z\left(1-z\right)\)
\(P\le\dfrac{\left(x+y\right)^2}{4}\left(1-2z\right)+z\left(1-z\right)=\dfrac{\left(1-z\right)^2\left(1-2z\right)}{4}+z\left(1-z\right)\)
\(P\le\dfrac{1+z^2-2z^3}{4}=\dfrac{1}{4}+\dfrac{z.z.\left(1-2z\right)}{4}\le\dfrac{1}{4}+\dfrac{1}{27.4}\left(z+z+1-2z\right)^3=\dfrac{7}{27}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Ta có: \(\left\{{}\begin{matrix}x+y+z=0\\xy+yz+zx=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=0\\2\left(xy+yz+zx\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2xy+2yz+2xz=0\\2xy+2yz+2xz=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy-2yz-2xz=0\)
\(\Rightarrow x^2+y^2+z^2=0\Rightarrow\left\{{}\begin{matrix}x^2\ge0\forall x\\y^2\ge0\forall y\\z^2\ge0\forall z\end{matrix}\right.\Rightarrow x^2+y^2+z^2\ge0\)
\("="\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)
\(\Rightarrow x=y=z=0\Rightarrow dpcm\)
\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^z+z^2+0=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\Leftrightarrow x=y=z=0\)
b) Bằng chứ ^^
\(\left(x+y\right)^2=x^2+2xy+y^2=4xy\)
\(\Leftrightarrow x^2-2xy+y^2=0\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)
Theo đề bài ta có:
\(\left\{\begin{matrix}x\ge xy\\y\ge yz\\z\ge xz\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-xy\ge0\\y-yz\ge0\\z-xz\ge0\end{matrix}\right.\)
\(\Rightarrow x+y+z-xy-yz-xz\ge0\)
Xét tích
\(\left(1-x\right)\left(1-y\right)\left(1-z\right)=-\left(x+y+z-xy-yz-xz-1+xyz\right)\ge0\)
\(\Rightarrow x+y+z-xy-yz-xz\le1-xyz\)
\(0\le xyz\le1\) nên \(1-xyz\le1\)
Vậy \(x+y+z-xy-yz-xz\le1\)
\(\left\{{}\begin{matrix}x+y+z=0\\xy+yz+zx=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=0\\2\left(xy+yz+zx\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2xy+2yz+2zx=0\\2xy+2yz+2zx=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx-2xy-2yz-2zx=0\)
\(\Rightarrow x^2+y^2+z^2=0\)
\(\left\{{}\begin{matrix}x^2\ge0\forall x\\y^2\ge0\forall y\\z^2\ge0\forall z\end{matrix}\right.\)
Nên: \(x^2+y^2+z^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)
Vậy \(x=y=z=0\)
Ta có điều phải chứng minh