K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

(x+y)(y+z)(x+z)=8xyz

<=>\((xy+xz+y^2+yz)(x+z)=8xyz\)

<=>\(x^2y+x^2z+y^2z+xyz+xyz+xz^2+z^2y+yz^2=8xyz\)

<=> \(x^2y+x^2z+y^2x+xz^2+y^2z+yz^2-6xyz=0\)

<=> \(y(x^2+z^2-2xz)+x(y^2-2yz+z^2)+z(y^2-2yx+x^2)=0\)

<=>\(y(x-z)^2+x(y-z)^2+z(x-y)^2=0\)

Mà x,y,z dương

=> \((x-z)^2=0=>x=z\)

\((x-y)^2=0=>x=y\)

\((y-z)^2=0=>y=z\)

Vậy x=y=z

8 tháng 11 2017

Áp dụng BĐT Cô-si cho 2 số dương, ta có:

\(18x+\frac{2}{x}\ge2\sqrt{18x.\frac{2}{x}}=12\)

Chứng minh tương tự, ta có

\(18y+\frac{2}{y}\ge12\)

\(18z+\frac{2}{z}\ge12\)

Từ đó suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge36\)(*)

Lại có \(x+y+z\le1\Rightarrow-\left(x+y+z\right)\ge-1\)(**)

Từ (*) và (**) suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(x+y+z\right)\ge36-1\)

                           \(\Leftrightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)

Vậy \(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)với \(x+y+z\le1\)

xét hiệu x3+y3+z3-3xyz

=(x+y)3+z3-3xy(x+y)-3xyz

=(x+y+z)3-3(x+y+z)(x+y)z-3xy(x+y+z)

=0       vì x+y+z=0

=>x3+y3+z3=3xyz

=>đpcm

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=-\frac{1}{z^3}\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+3\cdot\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{z^3}=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-3\cdot\frac{1}{xy}\cdot\left(-\frac{1}{z}\right)=\frac{3}{xyz}\)

Khi đó có : \(P=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)

17 tháng 8 2020

GT \(\Leftrightarrow xy+yz+zx=0\). Khi đó: \(\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3=3.xy.yz.zx=3x^2y^2z^2\).

Do đó: \(P=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{x^2y^2z^2}=3\)

AH
Akai Haruma
Giáo viên
27 tháng 12 2019

Lời giải:

Từ \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)

\(\Rightarrow \left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)(x+y+z)=x+y+z\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{x}{y+z}(y+z)+\frac{y^2}{z+x}+\frac{y}{z+x}(z+x)+\frac{z^2}{x+y}+\frac{z}{x+y}(x+y)=x+y+z\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+(x+y+z)=x+y+z\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

Vậy $M=0$

14 tháng 3 2016

Áp dụng bất đẳng thức cho ba số  \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\)  \(\Rightarrow\)  \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\)  \(\left(1\right)\)

\(y^2+z^2\ge2yz\)   \(\Rightarrow\)  \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\)  \(\left(2\right)\)

\(z^2+x^2\ge2xz\)  \(\Rightarrow\)  \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\)  \(\left(3\right)\)

Cộng từng vế của  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\)  ta được  \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)

\(\Leftrightarrow\)  \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(x=y=z=\frac{3}{2015}\)

Vậy,  \(P_{max}=2015\)  \(\Leftrightarrow\)   \(x=y=z=\frac{3}{2015}\)