Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)
Do \(x-y-z=0\)
\(\Rightarrow x-z=y;y-x=-z;y+z=x\)
Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)
Vậy A=-1
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz+y+1}{yz+y+1}\)
\(=1\)
Lời giải:
Ta có:
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+z\right).\left(y+x\right).\left(z+y\right)}{xyz}\)
+) Nếu .\(x+y+z\ne0\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(..............\)
Ta có: x - y - z = 0 \(\Rightarrow\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}\)
\(A=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
\(A=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\)
\(\text{Ta có: }x-y-z=0\Rightarrow x=y+z\)
\(y=x-z\)
\(z=x-y\)
\(\text{Mặt khác: }A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(=\left(\frac{x}{x}-\frac{z}{x}\right)\left(\frac{y}{y}-\frac{x}{y}\right)\left(\frac{z}{z}+\frac{y}{z}\right)\)
\(=\frac{x-z}{x}.\frac{y-x}{y}.\frac{y+z}{z}\)
\(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{x-y}\)
\(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{-\left(y-x\right)}\)
\(=-1\)
#)Giải :
\(A=\left(1-\frac{z}{y}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}.\frac{x+y}{z}.\frac{z-y}{x}\)
\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\)
Thay vào A, ta được :
\(A=\frac{-y}{x}.\frac{z}{y}.\frac{x}{z}=\frac{-yzx}{xyz}=-1\)
~Will~be~Pens~
Ta có: \(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{y+z-x}{x}=\frac{x+y-z+x-y+z+y+z-x}{z+y+x}=\frac{x+y+z}{x+y+z}=1\)
=> \(\frac{x+y-z}{z}=1\) <=> x+y-z=z <=> x+y=2z
Tương tự: \(\frac{x-y+z}{y}=1=>x+z=2y\)
Và \(\frac{y+z-x}{x}=1=>y+z=2x\)
=> \(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{\left(2z\right)\left(2x\right)\left(2y\right)}{xyz}=\frac{8xyz}{xyz}=8\)
Đáp số: A = 8