K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

Nếu\(a^3+b^3+c^3=3abc\Rightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

Thật vậy:\(a+b+c=0\Rightarrow a+b=-c\\ \Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3+c^3=3abc\)

Tương tự \(a=b=c\Rightarrow\orbr{\begin{cases}3abc=3a^3\\a^3+b^3+c^3=3a^3\end{cases}\Rightarrow a^3+b^3+c^3=3abc}\)

Áp dụng ta có:\(\orbr{\begin{cases}xy+yz+zx=0\\xy=yz=zx\Rightarrow x=y=z\end{cases}}\)

Khi x=y=z,ta có P=(1+1)(1+1)(1+1)=8

Khi xy+yz+zx=0,ta có:\(xy+yz=-zx\)

Tương tự:\(yz+zx=-xy\)

               \(xy+zx=-yz\)

Ta có \(P=2+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}=2+\frac{xz+yz}{z^2}+\frac{xy+xz}{x^2}+\frac{zy+xy}{y^2}\)\(=2-\left(\frac{z}{x}+\frac{x}{y}+\frac{y}{z}\right)\)\(=2-\frac{xy+yz+zx}{xyz}=2-\frac{0}{xyz}=2\)

Vậy P=8 khi x=y=z

      P=2 khi xy+yz+zx=0

28 tháng 9 2016

kho nhi

30 tháng 8 2020

Gỉa thiết tương đương với \(xy^2+\frac{x^2}{z}+\frac{y}{z^2}=3\)

Đặt \(a=x;b=y;c=\frac{1}{z}\)khi đó bài toán quy về 

\(ab^2+a^2c+c^2b=3\)Tìm GTLN của \(P=\frac{1}{a^4+b^4+c^4}\)

Sử dụng BĐT AM-GM ta có :

\(a^4+b^4+b^4+1\ge4\sqrt[4]{a^4b^4b^4}=4ab^2\)

Bằng cách chứng minh tương tự ta được :

\(b^4+c^4+c^4+1\ge4bc^2\)\(c^4+a^4+a^4+1\ge4ca^2\)

Cộng theo vế các bđt cùng chiều ta được :

\(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=4.3=12\)

\(< =>a^4+b^4+c^4+1\ge\frac{12}{3}=4\)

\(< =>a^4+b^4+c^4\ge4-1=3\)

Vậy \(P\le\frac{1}{3}\)Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1< =>x=y=z=1\)

6 tháng 10 2016

Tớ giải cho cậu bài này trên lớp rồi mà??????

~]

~~~~~~~~~~

~~~~~~~~~

olm-logo.png

23 tháng 4 2017

Bạn CM x=y=z=1

Sau đó bạn thế số vào và bạn sẽ tính đc phân số là 3/6 rút gọn là 1/2

Cuối cùng bạn sẽ kết luận:

Vì 1/2 ≤ 1/2

Nên ...(biểu thức)...≤1/2

23 tháng 4 2017

CM x=y=z kiểu gì vậy???

10 tháng 12 2017

bạn ơi hình như có chút sai đề

12 tháng 7 2020

\(\frac{1}{3x+2y+z}=\frac{1}{x+x+x+y+y+z}\le\frac{1}{6^2}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{36}\left(\frac{3}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

Tương tự thì ta có: 

\(\frac{1}{3x+2y+z}+\frac{1}{x+3y+2z}+\frac{1}{y+3z+2x}\)

\(\le\frac{1}{36}\left(\frac{3}{x}+\frac{2}{y}+\frac{1}{z}\right)+\frac{1}{36}\left(\frac{1}{x}+\frac{3}{y}+\frac{2}{z}\right)+\frac{1}{36}\left(\frac{1}{y}+\frac{3}{z}+\frac{2}{x}\right)\)

\(=\frac{6}{36}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{16}{6}=\frac{8}{3}\)

Dấu "=" xảy ra <=> x = y = z = 3/16

27 tháng 9 2021

à....cái đó thì mình chưa tính ra được

11 tháng 8 2016

Từ giả thiết \(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Khi đó \(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)

Tương tự cho 2 cái còn lại ta có: \(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)

\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)

Suy ra \(VT=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) 

Đpcm

 

11 tháng 8 2016

Trần Việt Linh vào giúp bạn này đi