Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(=\dfrac{1}{x+y+z}\)
\(\Rightarrow\dfrac{1}{x+y+z}=2\) và \(x+y+z=\dfrac{1}{2}\)
+) \(\dfrac{y+z+1}{x}=2\)
\(\Rightarrow y+z+1=2x\)
\(\Rightarrow x+y+z+1=3x\)
\(\Rightarrow3x=1+\dfrac{1}{2}\)
\(\Rightarrow3x=\dfrac{3}{2}\Rightarrow x=\dfrac{1}{2}\)
Tương tự như trên, ta tìm được \(y=\dfrac{5}{6},z=\dfrac{-5}{6}\)
Thay giá trị của x, y, z vào A ta được:
\(A=2016.\dfrac{1}{2}+\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\)
\(=1008\)
Vậy A = 1008
Ta có:\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+x\right)}{x+y+z}=2\)(theo tính chất của DTSBN)
Suy ra:\(\dfrac{1}{x+y+z}=2\)=>x+y+z=\(\dfrac{1}{2}\)
=>y+z=\(\dfrac{1}{2}\)-x
Tương tự, ta có được:
x+z=\(\dfrac{1}{2}-y\)
x+y=\(\dfrac{1}{2}-z\)
Thay các kết quả vừa tìm được, ta có:
\(\dfrac{0,5-x+1}{x}=\dfrac{0,5-y+2}{y}\dfrac{0,5-z-3}{z}=2\)=>\(\dfrac{1,5-x}{x}=\dfrac{2,5-y}{y}=\dfrac{-2,5-z}{z}=2\)
=>x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)
Thay x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)vào biểu thức A, ta có:
A=2018.\(\dfrac{1}{2}\)+\(\left(\dfrac{5}{6}\right)^{2017}\)+\(\left(\dfrac{-5}{6}\right)^{2017}\)
=>A=1009+\(\left[\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\right]\)
=>A=1009+0
=>A=1009
Vậy giá trị của biểu thức A là 1009
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
ta có :
\(\frac{2}{y-2}=\frac{3}{z+2}\Leftrightarrow\frac{2}{y}=\frac{3}{z+5}\Leftrightarrow\frac{4}{y^2}=\frac{9}{\left(z+5\right)^2}\) hay ta có :\(\left(z+5\right)^2=\frac{9}{4}y^2\Rightarrow2y^2-\frac{9}{4}y^2=-25\Leftrightarrow y^2=100\)
TH1.\(y=10\Rightarrow\frac{4}{x+1}=\frac{2}{10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=15\\z=10\end{cases}}\)
TH2.\(y=-10\Rightarrow\frac{4}{x+1}=\frac{2}{-10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=-25\\z=-20\end{cases}}\)
Bạn thay x, y, z vào đơn thức là được mà! Mấy đơn thức này còn thu gọn rồi! Bạn tự làm đi
Đề không đủ dữ kiện để tính toán. Bạn xem lại có thiếu gì không nhé.
ok