Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\)
\(\Rightarrow A=\frac{1+z+x^2}{1+y+z^2}+\frac{1+x+y^2}{1+z+x^2}+\frac{1+y+z^2}{1+x+y^2}\)
\(-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)
\(\Rightarrow A\ge3\sqrt[3]{\frac{1+z+x^2}{1+y+z^2}.\frac{1+x+y^2}{1+z+x^2}.\frac{1+y+z^2}{1+x+y^2}}\)
\(-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)
\(\Rightarrow A\ge3-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)
\(\Rightarrow A\ge3-\left(\frac{z}{y+2z}+\frac{x}{z+2x}+\frac{y}{x+2y}\right)\)
\(\Rightarrow A\ge3-\left(\frac{1}{2}-\frac{y}{2\left(y+2z\right)}+\frac{1}{2}-\frac{z}{2\left(z+2x\right)}+\frac{1}{2}-\frac{x}{2\left(x+2y\right)}\right)\)
\(\Rightarrow A\ge3-\frac{3}{2}+\frac{1}{2}\left(\frac{y}{y+2z}+\frac{z}{z+2x}+\frac{x}{x+2y}\right)\)
\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}+\frac{x^2}{x^2+2xy}\right)\)
\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{y^2+2yz+z^2+2xz+x^2+2xy}\right)\)
\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}\right)\)
\(\Rightarrow A\ge2\)
Dấu " = " xảy ra khi \(x=y=z=1\)
Ta có :
\(\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\)
\(\Rightarrow A=\frac{1+z+x^2}{1+y+z^2}+\frac{1+x+y^2}{1+z+x^2}+\frac{1+y+z^2}{1+x+y^2}\)
\(-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)
\(\Rightarrow A\ge3\sqrt[3]{\frac{1+z+x^2}{1+y+z^2}.\frac{1+x+y^2}{1+z+x^2}.\frac{1+y+z^2}{1+x+y^2}}\)
\(-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)
\(\Rightarrow A\ge3-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)
\(\Rightarrow A\ge3-\left(\frac{z}{y+2z}+\frac{x}{z+2x}+\frac{y}{x+2y}\right)\)
\(\Rightarrow A\ge3-\left(\frac{1}{2}-\frac{y}{2\left(y+2z\right)}+\frac{1}{2}-\frac{z}{2\left(z+2x\right)}+\frac{1}{2}-\frac{x}{2\left(x+2y\right)}\right)\)
\(\Rightarrow A\ge3-\frac{3}{2}+\frac{1}{2}\left(\frac{y}{y+2z}+\frac{z}{z+2x}+\frac{x}{x+2y}\right)\)
\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}+\frac{x^2}{x^2+2xy}\right)\)
\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{y^2+2yz+z^2+2xz+x^2+2xy}\right)\)
\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}\right)\)
\(\Rightarrow A\ge2\)
Dấu " = " xảy ra khi x=y=z=1
Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)
\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow T\ge1\)
Bài 2:
[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam
vì x+y+z=1nên
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)
nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)
\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)
dau = xay ra khi x=y=z=1/3
Đặt \(J=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\) với \(\hept{\begin{cases}x,y,z>0\\x+y+z\le1\end{cases}}\left(i\right)\)
Áp dụng bất đẳng thức \(B.C.S\) cho hai bộ số thực không âm gồm có \(\left(x^2;\frac{1}{x^2}\right)\) và \(\left(1^2+9^2\right),\) ta có:
\(\left(x^2+\frac{1}{x^2}\right)\left(1^2+9^2\right)\ge\left(x+\frac{9}{x}\right)^2\)
\(\Rightarrow\) \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{x}\right)\) \(\left(1\right)\)
Đơn giản thiết lập hai bất đẳng thức còn lại theo vòng hoán vị \(y\rightarrow z\) , ta cũng có:
\(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{y}\right)\) \(\left(2\right);\) \(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{z}\right)\) \(\left(3\right)\)
Cộng từng vế các bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) , suy ra:
\(J\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)
Ta có:
\(K=x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)
\(=\left(9x+\frac{1}{x}\right)+\left(9y+\frac{1}{y}\right)+\left(9z+\frac{1}{z}\right)+8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-8\left(x+y+z\right)\)
Khi đó, áp dụng bđt Cauchy đối với từng ba biểu thức đầu tiên, tiếp tục với bđt Cauchy-Swarz dạng Engel cho biểu thức thứ tư, chú ý rằng điều kiện đã cho \(\left(i\right)\) , ta có:
\(K\ge2\sqrt{9x.\frac{1}{x}}+2\sqrt{9y.\frac{1}{y}}+2\sqrt{9z.\frac{1}{z}}+\frac{72}{x+y+z}-8\left(x+y+z\right)\)
\(=6+6+6+72-8=82\)
Do đó, \(K\ge82\)
Suy ra \(J\ge\frac{82}{\sqrt{82}}=\sqrt{82}\) (đpcm)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x=y=z=\frac{1}{3}\)
Theo giả thiết xy + yz + zx = 1 nên ta có: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}=\frac{1}{xy+yz+zx+x^2}+\frac{1}{xy+yz+zx+y^2}+\frac{1}{xy+yz+zx+z^2}=\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+x\right)\left(y+z\right)}+\frac{1}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Theo bất đẳng thức Cauchy-Schwarz: \(\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^2\le\left(x+y+z\right)\left(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\right)=\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(\Rightarrow\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\le\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)Ta cần chứng minh: \(\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)
hay \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Bất đẳng thức cuối đúng theo AM - GM do: \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+z}.\frac{y}{x+y}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\le\frac{\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\left(\frac{y}{y+z}+\frac{y}{x+y}\right)+\left(\frac{z}{z+x}+\frac{z}{z+y}\right)}{2}=\frac{3}{2}\)Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Đặt vế trái là P
Ta có: \(P\ge\frac{x^2+1}{1+\frac{y^2+1}{2}+z^2}+\frac{y^2+1}{1+\frac{z^2+1}{2}+x^2}+\frac{z^2+1}{1+\frac{x^2+1}{2}+y^2}\)
Đặt \(\left(x^2+1;y^2+1;z^2+1\right)=\left(a;b;c\right)\Rightarrow a;b;c\ge1\)
\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}=2\left(\frac{a^2}{ab+2ac}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\right)\)
\(P\ge\frac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{6\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=2\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)