K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

ta có xy+yz+zx=0=> \(\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\Rightarrow a+b+c=0\)

ta xét \(a^3+b^3+c^3-3abc=a^3+b^3+3ab\left(a+b\right)+c^3-3ab-3abc\)

           \(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

=> \(a^3+b^3+c^3=3abc\) \(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

=> \(M=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)

=> M=3

12 tháng 9 2017

\(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{\left(yz+xz\right)^3+x^3y^3-3xy^2z^3-3x^2yz^3}{x^2y^2z^2}\)

\(=\frac{\left(yz+xz+xy\right)\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)

\(=\frac{0.\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)

\(=\frac{-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}=\frac{-3\left(xz+yz\right)}{xy}=\frac{-3.\left(-xy\right)}{xy}=3\)

20 tháng 2 2018

đáp án

Không có văn bản thay thế tự động nào.

8 tháng 1 2021

chia cả 2 vế của giả thiết cho xyz rồi đặt 1/x ; 1/y ; 1/z => a ; b ; c

đến đây thì tự làm tiếp đi 

4 tháng 6 2019

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\ge0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\)

\(\Rightarrow Q.E.D\)

Dấu "=" xảy ra khi a=b

4 tháng 6 2019

\(gt\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=6\)

Đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)thì \(P=a^2+b^2+c^2\)và \(a+b+c+ab+bc+ca=6\)

Giải:

Ta có: \(x^2+1\ge2\sqrt{x^2\cdot1}=2x\)

Tương tự rồi cộng theo vế ta được: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1) 

Lại có: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2) 

Cộng (1), (2) theo vế ta được:

\(3P+3\ge2\left(x+y+z+xy+yz+zx\right)=2\cdot6=12\)

\(\Rightarrow3P\ge9\Leftrightarrow P\ge3\)

MinP = 3 khi a = b = c = 1 hay x = y = z = 1

5 tháng 6 2021

Đây là câu bđt của chuyên Quảng Nam vừa thi mà:vvv

Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\left(a,b,c>0\right)\)

Khi đó: \(H=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)

\(=\left(a+b+c\right)-\left(\frac{9ab^2}{9b^2+1}+\frac{9bc^2}{9c^2+1}+\frac{9ca^2}{9a^2+1}\right)\)

\(\ge1-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)

\(=1-\frac{3}{2}\left(ab+bc+ca\right)\ge1-\frac{3}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=1-\frac{3}{2}\cdot\frac{1}{3}=\frac{1}{2}\)

Dấu "=" xảy ra khi: \(x=y=z=3\)

Vậy Min(H) = 1/2 khi x = y = z = 3

23 tháng 5 2021

Ta có \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\left(x,y,z>0\right)\).

\(\Leftrightarrow\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\).

\(P=\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+y^2}\right)\)\(\left(x,y,z>0\right)\).

Ta có: 

\(\sqrt{2y^2+2yz+2z^2}=\sqrt{\frac{5}{4}\left(y^2+2yz+z^2\right)+\frac{3}{4}\left(y^2-2yz+z^2\right)}\)

\(=\sqrt{\frac{5}{4}\left(y+z\right)^2+\frac{3}{4}\left(y-z\right)^2}\).

Ta có:

\(\frac{3}{4}\left(y-z\right)^2\ge0\forall y;z>0\).

\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2\ge\frac{5}{4}\left(y+z\right)^2\forall y;z>0\).

\(\Rightarrow\sqrt{\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y,z>0\).

\(\Leftrightarrow\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y;z>0\).

\(\Leftrightarrow x\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}x\left(y+z\right)\forall x;y;z>0\left(1\right)\).

Chứng minh tương tự, ta được:

\(y\sqrt{2x^2+xz+2z^2}\ge\frac{\sqrt{5}}{2}y\left(x+z\right)\forall x;y;z>0\left(2\right)\).

Chứng minh tương tự, ta được:

\(z\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}z\left(x+y\right)\forall x;y;z>0\left(3\right)\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\)\(\ge\)\(\frac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]=\sqrt{5}\left(xy+yz+zx\right)\).

\(\Leftrightarrow\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2z^2+zx+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)\(\ge\)\(\frac{\sqrt{5}\left(xy+yz+zx\right)}{xyz}=\sqrt{5}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\).

\(\Leftrightarrow P\ge\frac{\sqrt{5}}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\)

\(\left(4\right)\).

Vì \(x,y,z>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki, ta được:
\(\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\)\(\left(1.\frac{1}{\sqrt{x}}+1.\frac{1}{\sqrt{y}}+1.\frac{1}{\sqrt{z}}\right)^2\).

\(\Leftrightarrow\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2=1^2=1\)

(vì\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\)).

\(\Leftrightarrow\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\frac{\sqrt{5}}{3}\)\(\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(P\ge\frac{\sqrt{5}}{3}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\end{cases}}\Leftrightarrow x=y=z=9\).

Vậy \(minP=\frac{\sqrt{5}}{3}\Leftrightarrow x=y=z=9\).