K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

xy +yz +xz = xyz

suy ra \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) ( chia 2 vế cho xyz )

\(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) ( BĐT cô si )

min P = 1 khi x = y= z =1

26 tháng 5 2019

ook kcj

4 tháng 12 2021

sai đề

NV
4 tháng 12 2021

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)

Không mất tính tổng quát, giả sử đó là y và z 

\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)

Mặt khác từ giả thiết:

\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)

\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)

\(\Leftrightarrow1-x\ge2yz\)

\(\Rightarrow yz\le\dfrac{1-x}{2}\)

Do đó:

\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)

\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)

\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)

6 tháng 12 2023

Ta thấy 
72
=
2
3
.
3
2
72=2 
3
 .3 
2
  nên a, b có dạng 
{

=
2

3


=
2

.
3


a=2 
x
 3 
y
 
b=2 
z
 .3 
t
 

  với 

,

,

,


N
x,y,z,t∈N và 



{

,

}
=
3
;



{

,

}
=
2
max{x,z}=3;max{y,t}=2. 

 Theo đề bài, ta có 
2

.
3

+
2

.
3

=
42

x
 .3 
y
 +2 
z
 .3 
t
 =42

 

2


1
.
3


1
+
2


1
3


1
=
7
⇔2 
x−1
 .3 
y−1
 +2 
z−1
 3 
t−1
 =7   (*), do đó 

,

,

,


1
x,y,z,t≥1

 TH1: 



,



x≥z,y≤t. Khi đó 

=
3
,

=
2
x=3,t=2. (*) thành:

 
4.
3


1
+
3.
2


1
=
7
4.3 
y−1
 +3.2 
z−1
 =7 


=

=
1
⇔y=z=1

 Vậy 
{

=
24

=
18

a=24
b=18

  (nhận)

 TH2: KMTQ thì giả sử 



,



x≥z,y≥t. Khi đó 

=
3
,

=
2
x=3,z=2. (*) thành 

 
4.
3


1
+
2.
3


1
=
7
4.3 
y−1
 +2.3 
t−1
 =7, điều này là vô lí.

 Vậy 
(

,

)
=
(
24
,
18
)
(a,b)=(24,18) hay 
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.

NV
7 tháng 8 2021

\(T\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+x+y+z}=\dfrac{x+y+z}{2}\ge\dfrac{2019}{2}\)

áp dụng BĐT:\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\) với a,b,c,x,y,z là số dương

ta có BĐT Bunhiacopxki cho 3 bộ số:\(\left(\dfrac{a}{\sqrt{x}};\sqrt{x}\right);\left(\dfrac{b}{\sqrt{y}};\sqrt{y}\right);\left(\dfrac{c}{\sqrt{z}};\sqrt{z}\right)\)

ta có :

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\left(x+y+z\right)\)\(=\left[\left(\dfrac{a}{\sqrt{x}}\right)^2+\left(\dfrac{b}{\sqrt{y}}\right)^2+\left(\dfrac{c}{\sqrt{z}}\right)^2\right]\).\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)\(\ge\left(\dfrac{a}{\sqrt{x}}.\sqrt{x}+\dfrac{b}{\sqrt{y}}.\sqrt{y}+\dfrac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\)

lúc đó ta có :\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

ta có \(T=\dfrac{x^2}{x+\sqrt{yz}}+\dfrac{y^2}{y+\sqrt{zx}}+\dfrac{z^2}{z+\sqrt{xy}}\)\(\ge\dfrac{\left(x+y+z\right)^2}{x+\sqrt{yz}+y+\sqrt{zx}+z+\sqrt{xy}}\) mà ta có :

\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\)\(\le\dfrac{x+y}{2}+\dfrac{x+z}{2}+\dfrac{z+y}{2}\)\(\Rightarrow\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow T=\dfrac{2019}{2}\Leftrightarrow x=y=z=673\)

vậy \(\text{MinT}=\dfrac{2019}{2}\) khi và chỉ khi x=y=z=673