Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu x,y,z khác số dư khi chia cho 3
+ Nếu có 2 số chia hết cho 3.Số còn lại không chia hết cho 3.Giả sử x, y đều chia hết cho 3, z không chia hết cho 3
=> x + y + z không chia hết cho 3. Do x, y đều chia hết cho 3 nên (x−y)⋮3
=> (x − y)(y − z)(z − x)⋮3 (Vô lý do (x − y)(y − z)(z − x) = x + y + z )
+ Nếu có 1 số chia hết cho 3, 2 số còn lại khác số chia khi chia cho 3, không chia hết cho 3.Tương tự dẫn đến vô lý.
Vậy cả 3 số có cùng số dư khi chia cho 3
=>(x − y)⋮3;(y − z)⋮3;(z − x)⋮3
=>(x − y)(y − z)(z − x)⋮27
=> x + y + z⋮27
1) Đặt \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc\)
\(\Rightarrow A=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
\(\Rightarrow A\)có dạng \(4k-2abc\left(k\in Z\right)\)
Giả sử trong 3 số \(a,b,c\)có 1 số lẻ \(\Rightarrow\)Trong \(a,b,c\)có một số chẵn \(\left(a+b+c=4\right)\)
\(\Rightarrow2abc⋮4\)
Giả sử trong \(a,b,c\)có 1 số chẵn \(\Rightarrow2abc⋮4\)
\(\Rightarrow2abc=4m\)\(\Rightarrow A=4k-4m\). Mà \(4k-4m=4\left(k-m\right)⋮4\Rightarrow A⋮4\)
Vậy \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc⋮4\)(đpcm)
2.
Nếu 3 số x,y,z chia 3 khác số dư thì x+y+z chia hết cho 3
và (x-y),(y-z),(z-x) không chia hết cho 3
hay (x-y)(y-z)(z-x) không chia hết cho 3
=> (1) vô lí
+,Nếu trog 3 số 2 số có cùng số dư thì giả sử y,z cùng dư; x khác dư
khi đó x+y+z không c/h cho 3 ;
x-y và z-x không chia hết cho 3; y-z chia hết cho 3
=>(x-y).(y-z).(z-x) chia hết cho 3
=> (1) vô lí
Tóm lại 3 số x,y,z chia 3 cùng dư
khi đó (x-y),(y-z),(z-x) cùng chia hết cho 3
=> đpcm
Đặt \(A=6x+10y+z\), \(B=3x-2y+4z\)
Ta có : \(A+5B=\left(6x+10y+z\right)+5\left(3x-2y+4z\right)\)
\(=21x+21z=21\left(x+z\right)⋮21\forall x,z\inℤ\)
\(\Rightarrow A+5B⋮21\)(1)
+) Nếu \(A⋮21\) thì từ (1) \(\Rightarrow5B⋮21\Rightarrow B⋮21\) ( Do \(5⋮̸21\) )
+) Nếu \(B⋮21\Rightarrow5B⋮21\) thì từ (1) \(\Rightarrow A⋮21\)
Vậy ta có điều phải chứng minh.
Vì \(6x+10y+z⋮21\)\(\Leftrightarrow4.\left(6x+10y+z\right)⋮21\)\(\Leftrightarrow24x+40y+4z⋮21\)
Ta có: \(\left(24x+40y+4z\right)-\left(3x-2y+4z\right)\)
\(=24x+40y+4z-3x+2y-4z\)
\(=\left(24x-3x\right)+\left(40y+2y\right)+\left(4z-4z\right)\)
\(=21x+42y=21.\left(x+2y\right)⋮21\)
mà \(24x+40y+4z⋮21\)\(\Rightarrow3x-2y+4z⋮21\)
Điều ngược lại:
Vì \(3x-2y+4z⋮21\)\(\Leftrightarrow5.\left(3x-2y+4z\right)⋮21\)\(\Leftrightarrow15x-10y+20z⋮21\)
Ta có: \(\left(15x-10y+20z\right)+\left(6x+10y+z\right)\)
\(=15x-10y+20z+6x+10y+z\)
\(=\left(15x+6x\right)-\left(10y-10y\right)+\left(20z+z\right)\)
\(=21x+21z=21.\left(x+z\right)⋮21\)
mà \(15x-10y+20z⋮21\)\(\Rightarrow6x+10y+z⋮21\)
Vậy \(6x+10y+z⋮21\Leftrightarrow3x-2y+4z⋮21\)
Lời giải:
Vì $x^2+y^2$ chẵn nên $x,y$ có cùng tính chất chẵn lẻ
Nếu $x,y$ cùng lẻ. Đặt $x=2k+1, y=2m+1$ với $k,m$ nguyên
Khi đó:
$x^2+y^2=(2k+1)^2+(2m+1)^2=4(k^2+m^2+k+m)+2$ không chia hết cho $4$
$\Rightarrow x^2+y^2$ không chia hết cho $16$ (trái giả thiết)
Do đó $x,y$ cùng chẵn
Đặt $x=2k, y=2m$ với $k,m$ nguyên
a.
$xy=2k.2m=4km\vdots 4$ (đpcm)
b.
$x^2+y^2=(2k)^2+(2m)^2=4(k^2+m^2)\vdots 16$
$\Rightarrow k^2+m^2\vdots 4$
Tương tự lập luận ở trên, $k,m$ cùng tính chẵn lẻ. Nếu $k,m$ cùng lẻ thì $k^2+m^2$ không chia hết cho $4$ (vô lý) nên $k,m$ cùng chẵn.
Đặt $k=2k_1, m=2m_1$ với $k_1, m_1$ nguyên
Khi đó:
$xy=2k.2m=4km=4.2k_1.2m_1=16k_1m_1\vdots 16$ (đpcm)
Giải: Do (100x+10y+z)+5(x−2y+4z)=105x+21z=21(5x+z)⋮21(100x+10y+z)+5(x−2y+4z)=105x+21z=21(5x+z)⋮21
nên 100x+10y+z⋮21⇔5(x−2y+4z)⋮21⇔x−2y+4z⋮21100x+10y+z⋮21⇔5(x−2y+4z)⋮21⇔x−2y+4z⋮21
Do đó cả chiều thuận và đảo đều thoả mãn.