K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

2x+y+3z=6(1)3x+4y−3z=4(2){2x+y+3z=6(1)3x+4y−3z=4(2)

Từ hệ phương điều kiện, ta có:

Lấy (1) + (2) ta được: 5x+5y= 10 ⇒⇒ x+y=2 ⇔⇔ y=2-x (3)

từ(1) ta suy ra y=6-3z-2x thế biểu thức vào phương trình (2) , ta được :

-5x-15z=-20 ⇔⇔ x+3z=4 ⇔⇔ z =43−x343−x3 (4)

thay (4) và (2) vào P ta được :

P= 2x+3y-4z = 2x +3.(2-x)- 4.(43−x343−x3) =2x+6-3x-163+4x3=x3+23163+4x3=x3+23

⇒⇒Min P ⇔⇔ x3x3 đạt GTNN mà 3>0 cố định ⇒⇒ Min P⇔⇔ x đạt GTNN

Mà x >= 0, x là số thực nên Min P = 2323 ,dấu "=" xảy ra khi và chỉ khi :

x=0

Ta có x + y = 2 ⇒⇒ y=2 ; z = 43−x343−x3 ⇒⇒ z =43

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

20 tháng 4 2020

dễ mà dốt thé

20 tháng 4 2020

Tổng của ba đơn thức -4x^{2}y^{2}−4x2y2 ; 2x^{2}y^{2}2x2y2 ; -x^{2}y^{2}−x2y2 là 

30 tháng 7 2017

x>y>z>663 nhé

4 tháng 5 2016

\(x^2+y^2+z^2\ge\frac{1}{3}\left(a+y+z\right)^2\)