Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#) Giải
Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0)
=> z(x + y) = xy
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1
Vậy không tồn tại x, y, z thỏa đk bài toán
~ Hok tốt ~
kham khảo ở đây nha
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
vào thống kê hỏi đáp của mình nhấn zô chữ xanh trong câu trả lời này
hc tốt ~:B~
Để tìm nghiệm nguyên của phương trình x(x+3) + y(y+3) = z(z+3) với x và y là số nguyên tố, ta có thể sử dụng phương pháp thử và sai hoặc sử dụng các thuật toán liệt kê các số nguyên tố và kiểm tra từng cặp giá trị (x, y). Tuy nhiên, do phương trình này là một phương trình bậc hai với hai biến, việc tìm nghiệm nguyên chính xác có thể rất khó khăn và tốn nhiều thời gian.
Một cách tiếp cận khác là sử dụng các công cụ toán học, như chương trình máy tính hoặc ngôn ngữ lập trình, để tìm nghiệm của phương trình này. Bằng cách lặp qua tất cả các giá trị nguyên tố cho x và y từ -N đến N (trong đó N là một giá trị lớn nào đó), ta có thể kiểm tra nếu tồn tại một giá trị nguyên tố z thỏa mãn phương trình. Tuy nhiên, quá trình này có thể tốn nhiều thời gian và tài nguyên tính toán.
Vì vậy, việc tìm nghiệm nguyên của phương trình này với x và y là số nguyên tố là một bài toán phức tạp và không có cách giải chính xác nhanh chóng.