Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)
y+z-x/x=z+x-y/y=x+y-z/z
=y+z-x+z+x-y+x+y-z/x+y+z
=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z
=0+0+0+x+y+z/x+y+z=1
\(\Leftrightarrow\)x=y=z (*)
thay (*) vào B ta có:
B=(1+x/x)(1+x/x)(1+x/x)
=2.2.2=8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )
\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)
Thế x = y = z vào B ta được :
\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
Đặt: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)
\(\Rightarrow x=k\)
\(y=2k\)
\(z=3k\)
Thay x = k , y = 2k , z = 3k vào biểu thức cần cm ,ta đc:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=\left(k+2k+3k\right)\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)
\(=6k.\left(\frac{1}{k}+\frac{2}{k}+\frac{3}{k}\right)\)
\(=6k.\frac{6}{k}\)
\(=\frac{36k}{k}=36\)
=.= hok tốt!!
Đặt \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)
Do đó \(x=k;y=2k;z=3k\)
Thay \(x=k;y=2k;z=3k\)vào \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\)ta có
\(\left(k+2k+3k\right).\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)
\(=6k.\left(\frac{6}{6k}+\frac{12}{6k}+\frac{18}{6k}\right)\)
\(=6k.\frac{6+12+18}{6k}\)
\(=\frac{6k.\left(6+12+18\right)}{6k}\)
\(=36\)
Do đó \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=36\)
Ta có:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)
Ta có:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{xa^2}{a^3}=\frac{yb^2}{b^3}=\frac{zc^2}{c^3}=\frac{a^2x+b^2y+c^2z}{a^3+b^3+c^3}\)
Ta có\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^3}{a^2x}=\frac{y^3}{b^2y}=\frac{z^3}{c^2z}=\frac{x^3+y^3+z^3}{a^2x+b^2y+c^2z}\)
\(A=\frac{\left(x^3+y^3+z^3\right)\left(a^3+b^3+c^3\right)\left(a+b+c\right)}{\left(x+y+z\right)\left(a^2x+b^2y+c^2z\right)^2}=\frac{x^3+y^3+z^3}{a^2x+b^2y+c^2z}\cdot\frac{a^3+b^3+c^3}{a^2x+b^2y+c^2z}\cdot\frac{a+b+c}{x+y+z}\)
\(=\frac{x^2}{a^2}\cdot\frac{a}{x}\cdot\frac{a}{x}\)=1
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
mik làm như thế này có đúng không nhỉ ?
Ta co : x^2=yz
\(\frac{x}{y}=\frac{z}{x}\Rightarrow\left(\frac{x}{y}\right)^2=\left(\frac{z}{x}\right)^2=\left(\frac{x-z}{y-x}\right)^2\left(1\right)\)
\(\frac{x}{y}=\frac{z}{x}\Rightarrow\left(\frac{x}{y}\right)^2=\left(\frac{z}{x}\right)^2\Rightarrow\frac{x^2}{y^2}=\frac{z^2}{x^2}=\frac{x^2+z^2}{y^2+x^2}\)
Lai co :\(\frac{x}{y}=\frac{z}{x}=\left(\frac{x}{y}\right)^2=\left(\frac{z}{x}\right)^2\)
=> \(\frac{z}{y}=\left(\frac{x}{y}\right)^2=\left(\frac{z}{x}\right)^2\left(3\right)\)
Từ (1) và (2) suy ra :
\(\frac{z}{y}=\frac{x^2+z^2}{y^2+x^2}=\left(\frac{x-z}{y-x}\right)^2\)