Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{2}{\sqrt{x}}-z=\frac{2\sqrt{xyz}}{\sqrt{x}}-z\)\(=2\sqrt{yz}-z\le y+z-z=y\)THEO bđt côsi
Tương tự \(\frac{2}{\sqrt{y}}-x\le z\)và \(\frac{2}{\sqrt{z}}-y\le x\)
\(\Rightarrow A\le xyz=1\)
VẬY MAX A=1 TẠI x=y=z=1
dễ mà bạn :))) gáy tí , sai thì thôi
\(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)
\(=\frac{x^3\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}+\frac{y^3\left(1+x\right)}{\left(1+y\right)\left(1+x\right)\left(1+z\right)}+\frac{z^3\left(1+y\right)}{\left(1+x\right)\left(1+z\right)\left(1+y\right)}\)
\(=\frac{x^3\left(1+z\right)+y^3\left(1+x\right)+z^3\left(1+y\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{3\sqrt[3]{x^3y^3z^3\left(1+x\right)\left(1+y\right)\left(1+z\right)}}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
đến đây áp dụng BĐT phụ ( 1+a ) ( 1+b ) ( 1+c ) >= 8abc
EZ :)))
\(ĐK:x,y,z\ne0\)
Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=a\)
\(\Rightarrow x-\frac{1}{y}=\frac{a}{6};y-\frac{1}{z}=\frac{a}{3};z-\frac{1}{x}=\frac{a}{2}\)\(\Rightarrow\frac{a^3}{36}=xyz-\frac{1}{xyz}-x+\frac{1}{y}-y+\frac{1}{z}-z+\frac{1}{x}=a-\frac{a}{6}-\frac{a}{3}-\frac{a}{2}=0\)suy ra a = 0
Nếu xyz = 1 thì x = y = z = 1 (thỏa mãn)
Nếu xyz = -1 thì x = y = z = -1 (thỏa mãn)
Vậy nghiệm của hệ phương trình (x; y; z) là: (1; 1; 1),(-1; -1; -1).
Áp dụng bất đẳng thức Cô-si, ta có: \(\left(3x+1\right)\left(y+z\right)+x=3xy+3xz+\left(x+y+z\right)\ge3xy+3xz+3\sqrt[3]{xyz}\)\(=3xy+3xz+3\Rightarrow\frac{1}{\left(3x+1\right)\left(y+z\right)+x}\le\frac{1}{3\left(xy+xz+1\right)}\)
Tiếp tục áp dụng bất đẳng thức dạng \(u^3+v^3\ge uv\left(u+v\right)\), ta được: \(\frac{1}{3\left(xy+xz+1\right)}=\frac{1}{3\left[x\left(\left(\sqrt[3]{y}\right)^3+\left(\sqrt[3]{z}\right)^3\right)+1\right]}\le\frac{1}{3\left[x\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1\right]}\)\(=\frac{\sqrt[3]{xyz}}{3\left[\sqrt[3]{x^2}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+\sqrt[3]{xyz}\right]}=\frac{\sqrt[3]{yz}}{3\left(\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}\right)}\)
Tương tự rồi cộng lại theo vế, ta được: \(P\le\frac{1}{3}\)
Đẳng thức xảy ra khi x = y = z = 1
A
Áp dụng BĐT cosi ta có
\(\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)
\(x\sqrt{5-4x^2}\le\frac{x^2+5-4x^2}{2}=\frac{-3x^2+5}{2}\)
Khi đó
\(A\le3x+\frac{-3x^2+5}{2}=\frac{-3x^2+6x+5}{2}=\frac{-3\left(x-1\right)^2}{2}+4\le4\)
MaxA=4 khi \(\hept{\begin{cases}2x-1=1\\x^2=5-4x^2\\x=1\end{cases}\Rightarrow}x=1\)
B
Áp dụng BĐT cosi ta có :
\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
=> \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
=> \(B\le\frac{xyz.\left(\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+xz\right)}=\frac{xyz.\left(\sqrt{3}+1\right)}{\left(xy+yz+xz\right)\sqrt{x^2+y^2+z^2}}\)
Lại có \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\); \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)
=> \(\sqrt{x^2+y^2+z^2}\left(xy+yz+xz\right)\ge3\sqrt[3]{x^2y^2z^2}.\sqrt{3\sqrt[3]{x^2y^2z^2}}=3\sqrt{3}.xyz\)
=> \(B\le\frac{\sqrt{3}+1}{3\sqrt{3}}=\frac{3+\sqrt{3}}{9}\)
\(MaxB=\frac{3+\sqrt{3}}{9}\)khi x=y=z
Ta có:
\(H=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
\(=\frac{\frac{1}{x^2}}{x\left(y+z\right)}+\frac{\frac{1}{y^2}}{y\left(z+x\right)}+\frac{\frac{1}{z^2}}{z\left(x+y\right)}\)
\(=\frac{\left(\frac{1}{x}\right)^2}{xy+zx}+\frac{\left(\frac{1}{y}\right)^2}{yz+xy}+\frac{\left(\frac{1}{z}\right)^2}{zx+yz}\)
Áp dụng BĐT Bunyakovsky dạng cộng mẫu ta được:
\(H\ge\frac{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(\frac{xy+yz+zx}{xyz}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}\)
\(=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi: x = y = z = 1
Vậy Min(H) = 3/2 khi x = y = z = 1
Ta có: \(\frac{1}{\left(3x+1\right)\left(y+z\right)+x}=\frac{1}{3x\left(y+z\right)+x+y+z}\le\frac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}\)
\(=\frac{1}{3x\left(y+z\right)+3\sqrt[3]{1}}=\frac{1}{3x\left(y+z\right)+3}=\frac{1}{3\left(xy+zx+1\right)}=\frac{1}{3}\cdot\frac{1}{\frac{1}{y}+\frac{1}{z}+1}\)
Tương tự ta chứng minh được:
\(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\) ; \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{x}+\frac{1}{y}+1}\)
Cộng vế 3 BĐT trên lại:
\(A\le\frac{1}{3}\cdot\left(\frac{1}{\frac{1}{x}+\frac{1}{y}+1}+\frac{1}{\frac{1}{y}+\frac{1}{z}+1}+\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\right)\)
\(\Leftrightarrow3A\le\frac{1}{\left(\frac{1}{\sqrt[3]{x}}\right)^3+\left(\frac{1}{\sqrt[3]{y}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{y}}\right)^3+\left(\frac{1}{\sqrt[3]{z}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{z}}\right)^3+\left(\frac{1}{\sqrt[3]{x}}\right)^3+1}\)
Đặt \(\left(\frac{1}{\sqrt[3]{x}};\frac{1}{\sqrt[3]{y}};\frac{1}{\sqrt[3]{z}}\right)=\left(a;b;c\right)\) khi đó:
\(3A\le\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)
\(=\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+1}+\frac{1}{\left(b+c\right)\left(b^2-bc+c^2\right)+1}+\frac{1}{\left(c+a\right)\left(c^2-ca+a^2\right)+1}\)
\(\le\frac{1}{\left(a+b\right)\left(2ab-ab\right)+1}+\frac{1}{\left(b+c\right)\left(2bc-bc\right)+1}+\frac{1}{\left(c+a\right)\left(2ca-ca\right)+1}\)
\(=\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)
\(=\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)
\(=\frac{c}{a+b+c}+\frac{a}{b+c+a}+\frac{b}{c+a+b}\)
\(=\frac{a+b+c}{a+b+c}=1\)
Dấu "=" xảy ra khi: \(a=b=c\Leftrightarrow x=y=z=1\)
Vậy Max(A) = 1 khi x = y = z = 1
Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath
ko dang cau hoi linh tinh
Điên à. BĐT là linh tinh. học lại đi