K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

\(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)=\(\frac{1}{1+x+xy}+\frac{x}{x.\left(1+y+yz\right)}+\frac{xy}{xy\left(1+z+zx\right)}\)

                                                                                    =\(\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+zxyx}\)

                                                                                    =\(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}\)(vì xyz=1)

                                                                                     =\(\frac{1+x+xy}{1+x+xy}\)

                                                                                     =1

23 tháng 11 2019

đề là như thế này đúng ko anh ?

\(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}\)\(+\frac{1}{z+zx}\)

\(\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{1+y+yz}\)\(+\frac{y}{y+yz+xyz}\)

=\(\frac{yz+y+1}{1+y+yz}\)

=\(1\)

ủa em hỏi rút gọn đến đây bằng 1 thì tính xong rồi :))

15 tháng 1 2021

\(\dfrac{1}{1+x+xy}+\dfrac{1}{1+y+yz}+\dfrac{1}{1+z+zx}\)

\(=\dfrac{1}{1+x+xy}+\dfrac{x}{x+xy+xyz}+\dfrac{xy}{xy+xyz+xyzx}\)

\(=\dfrac{1}{1+x+xy}+\dfrac{x}{x+xy+1}+\dfrac{xy}{xy+1+x}\) (Do xyz = 1)

\(=1\).

22 tháng 2 2021

 \(M=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)

Vì xyz=1 nên \(x\ne0;y\ne0;z\ne0\)

Ta có \(\frac{1}{1+x+xy}=\frac{z}{\left(1+y+yz\right)xz}=\frac{xz}{z+xz+1}\)

Tương tự \(\frac{1}{1+y+yz}=\frac{xz}{\left(1+y+yz\right)xz}=\frac{xz}{xz+z+1}\)

Khi đó \(M=\frac{z}{z+xz+1}+\frac{xz}{xz+1+z}+\frac{1}{1+z+xz}=\frac{z+xz+1}{z+zx+1}=1\)

17 tháng 4 2019

Ta có

C = xyz – (xy + yz + zx) + x + y + z – 1

= (xyz – xy) – (yz – y) – (zx – x) + (z – 1)

= xy(z – 1) – y(z – 1) – x(z – 1) + (z – 1)

= (z – 1)(xy – y – x + 1)

= (z – 1).[y(x – 1) – (x – 1)]

= (z – 1)(y – 1)(x – 1)

Với x = 9; y = 10; z = 101 ta có

C = (101 – 1)(10 – 1)(9 – 1) = 100.9.8 = 7200

Đáp án cần chọn là: C

22 tháng 5 2022

\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{xy+x+xyz}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz}{y+1+yz}+\dfrac{1}{y+yz+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+1}{y+1+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+xyz}{y+xyz+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{y\left(z+xz\right)}{y\left(1+xz+z\right)}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{z+xz+1}{xz+z+1}\)

\(A=1\)

 

 

 

22 tháng 5 2022

uii sai thì thông cảm nha bạn:<

AH
Akai Haruma
Giáo viên
28 tháng 12 2017

Lời giải:

Ta có: Thay \(xyz=1\)

\(S=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)

\(S=\frac{z}{z+xz+xyz}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}\)

\(S=\frac{z}{z+xz+1}+\frac{xz}{xz+xyz+xz.yz}+\frac{1}{1+z+xz}\)

\(S=\frac{z}{z+xz+1}+\frac{xz}{xz+1+z}+\frac{1}{1+z+xz}\)

\(S=\frac{z+xz+1}{xz+z+1}=1\)

Vậy \(S=1\)

2 tháng 1 2016

ta có x/xy+x+1 +y/yz+y+1 +z/xz+z+1

=xz/xyz+xz+z +xyz/xyz^2+xyz+xz +z/xz+z+1

=xz/1+xz+z +1/z+1+xz +z/ xz+z+1

=xz+z+1 /xz+z+1 =1