Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(H=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
\(=\frac{\frac{1}{x^2}}{x\left(y+z\right)}+\frac{\frac{1}{y^2}}{y\left(z+x\right)}+\frac{\frac{1}{z^2}}{z\left(x+y\right)}\)
\(=\frac{\left(\frac{1}{x}\right)^2}{xy+zx}+\frac{\left(\frac{1}{y}\right)^2}{yz+xy}+\frac{\left(\frac{1}{z}\right)^2}{zx+yz}\)
Áp dụng BĐT Bunyakovsky dạng cộng mẫu ta được:
\(H\ge\frac{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(\frac{xy+yz+zx}{xyz}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}\)
\(=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi: x = y = z = 1
Vậy Min(H) = 3/2 khi x = y = z = 1
Ta có \(3=x+y+z=x+y+\frac{z}{2}+\frac{z}{2}\ge4\sqrt[4]{x.y.\frac{z^2}{4}}\)
=> \(xyz^2\le\frac{81}{64}\)
\(A=\frac{x+y}{xyz}\ge\frac{2\sqrt{xy}}{xyz}=\frac{2}{\sqrt{xyz^2}}\ge\frac{2}{\sqrt{\frac{81}{64}}}=\frac{16}{9}\)
MinA=16/9 khi \(x=y=\frac{3}{4};z=\frac{3}{2}\)
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
\(P=\frac{\sqrt{1+x^2+y^2}}{xy}+\frac{\sqrt{1+y^2+z^2}}{yz}+\frac{\sqrt{1+z^2+x^2}}{zx}\)
\(\ge\text{Σ}\frac{\sqrt{\frac{\left(1+x+y\right)^2}{3}}}{xy}\text{=}\frac{1+x+y}{xy\sqrt{3}}\)
\(=\frac{\sqrt{3}}{3}\left(\frac{1+x+y}{xy}+\frac{1+y+z}{yz}+\frac{1+z+x}{zx}\right)\)
\(=\frac{\sqrt{3}}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)
\(=\frac{\sqrt{3}}{3}\left(x+y+z+2xy+2yz+2zx\right)\)\(\ge\frac{\sqrt{3}}{3}\left(3\sqrt[3]{xyz}+2\cdot3\sqrt[3]{x^2y^2z^2}\right)=\frac{\sqrt{3}}{3}\left(3+6\right)=3\sqrt{3}\)
Dấu = xảy ra khi \(x=y=z=1\)
dễ mà bạn :))) gáy tí , sai thì thôi
\(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)
\(=\frac{x^3\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}+\frac{y^3\left(1+x\right)}{\left(1+y\right)\left(1+x\right)\left(1+z\right)}+\frac{z^3\left(1+y\right)}{\left(1+x\right)\left(1+z\right)\left(1+y\right)}\)
\(=\frac{x^3\left(1+z\right)+y^3\left(1+x\right)+z^3\left(1+y\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{3\sqrt[3]{x^3y^3z^3\left(1+x\right)\left(1+y\right)\left(1+z\right)}}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
đến đây áp dụng BĐT phụ ( 1+a ) ( 1+b ) ( 1+c ) >= 8abc
EZ :)))
Ta có \(\frac{y}{x\sqrt{y^2+1}}=\frac{y\sqrt{xz}}{x\sqrt{y\left(x+y+z\right)+xz}}=\frac{yz}{\sqrt{x\left(y+z\right).z\left(x+y\right)}}\ge\frac{2yz}{2xz+xy+yz}\)
Đặt \(a=xy,b=yz,c=xz\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Khi đó
\(P\ge\frac{2b}{2c+a+b}+\frac{2c}{2a+b+c}+\frac{2a}{2b+a+c}\ge\frac{2\left(a+b+c\right)^2}{b^2+c^2+a^2+3\left(ab+bc+ac\right)}\)
Xét \(P\ge\frac{3}{2}\)
=> \(4\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2\right)+9\left(ab+bc+ac\right)\)
<=> \(a^2+b^2+c^2\ge\left(ab+bc+ac\right)\)(luôn đúng )
Vậy \(MinP=\frac{3}{2}\)khi a=b=c=3=> \(x=y=z=\sqrt{3}\)
a)
b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)
\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)
\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)
\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)
Dấu = khi \(x=y=z=1\)
a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)
Lấy \(T_0=a_0\)
\(T_1=a_0+a_1\)
\(T_2=a_0+a_1+a_2\)
\(T_3=a_0+a_1+a_2+a_3\)
\(T_4=a_0+a_1+a_2+a_3+a_4\)
Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:
TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh
TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.
Áp dụng: (a + b)² ≥ 4ab Ta có:
(x + y + z)² ≥ 4(x + y)z hay 1 ≥ 4(x + y)z (*) (Vì x + y + z = 1)
=> (x + y)/xyz ≥ 4(x + y)²z/xyz ( Nhân hai vế (*) với (x + y)/xyz)
=> (x + y)/xyz ≥ 4.4xyz/xyz = 16 (vì (x + y)² ≥ 4xy)
Vậy min A = 16 <=> x = y; x + y = z và x + y + z = 1
=> x = y = 1/4; z = 1/2
bn Phùng Gia Bảo nhầm 1 chỗ r nhe
C1: \(A=\frac{x+y+z}{xyz}=\frac{1}{\left(\sqrt[3]{xyz}\right)^3}\ge\frac{1}{\left(\frac{x+y+z}{3}\right)^3}=\frac{1}{\frac{1}{27}}=27\)
C2: \(A=\frac{x+y+z}{xyz}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\ge\frac{9}{\frac{\left(x+y+z\right)^2}{3}}=\frac{9}{\frac{1}{3}}=27\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\)