K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

Ta có  \(A=9x^2+9y^2+25z^2\)

\(=5\left(x^2+y^2\right)+\left(4x^2+25z^2\right)+\left(4y^2+25z^2\right)\)

\(\ge5.2\sqrt{x^2y^2}+2\sqrt{4x^2.25z^2}+2\sqrt{4y^2.25z^2}\)

\(=10xy+20xz+20yz\)

\(=10\left(xy+2xz+2yz\right)=10.65=650\)

Đẳng thức xảy ra  \(\Leftrightarrow\)   \(\hept{\begin{cases}x=y\\4x^2=25z^2\\4y^2=25z^2\end{cases}}\)  và   \(xy+2xz+2yz=65\)

\(\Leftrightarrow\)   \(\hept{\begin{cases}x=y=5\\z=2\end{cases}}\)

Ta có : \(x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}.2.\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Đẳng thức xảy ra khi \(x=y=z\)

22 tháng 8 2021

nhầm nha các bạn phải là a+b+c nha

22 tháng 8 2021

bài này tìm max thì phải đó bạn 

29 tháng 12 2019

\(Q=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy+2016=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{5}{4xy}+2016\)

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\). Dấu "=" khi a=b (bạn tự chứng minh)

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)

Vì x>0, y>0 nên xy>0

Áp dụng bất đẳng thức Cô si cho 2 số dương

\(\frac{1}{4xy}+4xy\ge2\sqrt{\frac{1}{4xy}.4xy}=2\)

Ta có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)

Dấu "=" khi \(\hept{\begin{cases}x^2+y^2=2xy\\\frac{1}{4xy}=4xy\\x=y\end{cases}\Rightarrow x=y=\frac{1}{2}}\)

\(\Rightarrow Q\ge4+2+5+2016=2027\)

Vậy \(minQ=2027\)khi \(x=y=\frac{1}{2}\)

16 tháng 5 2019

Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)

\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)

=> \(A\ge-\frac{2}{3}\)

\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)

16 tháng 5 2019

Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a

c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

KL:.............................

 
15 tháng 11 2018

2.

a/ Áp dụgn hệ quả bđt cô si,ta có :

\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)

Vậy GTLN A =a^2/3 khi x= y =z =a/3

b/Áp dụng BĐT Cô-Si dạng Engel,ta có :

\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)

Vậy GTNN của B = a^2/2 khi x=y=z =a/3

15 tháng 11 2018

\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)

15 tháng 9 2017

Áp dụng bất đẳng thức: x2 + a2y2 \(\ge\)2axy, ta có:

\(\frac{1+\sqrt{5}}{2}\left(xy+yz+zx\right)\le\frac{\frac{1+\sqrt{5}}{2}\left(x^2+y^2\right)+\left[y^2+\left(\frac{1+\sqrt{5}}{2}\right)^2x^2\right]+\left[\left(\frac{1+\sqrt{5}}{2}\right)^2z^2+x^2\right]}{2}\)=

\(\frac{\left(\frac{1+\sqrt{5}}{2}+1\right)\left(x^2+y^2\right)+2\left(\frac{1+\sqrt{5}}{2}\right)^2z^2}{2}\)

15 tháng 9 2017

\(\Rightarrow\left(1+\sqrt{5}\right)\le\frac{3+\sqrt{5}}{2}\left(x^2+y^2\right)+\left(3+\sqrt{5}\right)z^2\)\(\Rightarrow x^2+y^2-2z^2\ge\sqrt{5}-1\)\(\Rightarrow P\ge\sqrt{5}-1\)

Vậy GTNN của P là \(\sqrt{5}-1\)khi \(x=y=\frac{1+\sqrt{5}}{2}z.\)