\(\dfrac{1}{x^2+y^2+z^2}+\dfrac{200...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 6 2020

\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)

\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)

\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 6 2020

Áp dụng BĐT Côsi dưới dạng engel, ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9

Dấu "=" xảy ra ⇔ x = y = z

9 tháng 5 2018

\(H=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{\left(1+1+1\right)^2}{3+xy+yz+xz}=\dfrac{9}{3+xy+yz+xz}\)

Mặt khác,theo AM-GM: \(xy+yz+xz\le x^2+y^2+z^2=3\)

\(\Rightarrow\dfrac{9}{3+xy+yz+xz}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" khi: \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 1:
Vì $x+y+z=1$ nên:

\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)

\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)

\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Vậy $Q$ max bằng $1$

Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 2:
Vì $x+y+z=1$ nên:

\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)

\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)

Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)

\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)

Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)

Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)

Dấu bằng xảy ra khi $3x=3y=3z=1$

9 tháng 6 2017

Đề bị sai kia bạn biểu thức thứ 3 đó

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) (bạn xem trên mạng đi có đó từ bđt cô si mà ra ) ta có:

\(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{9}{3+xy+yz+zx}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)

(vì \(xy+yz+zx\le x^2+y^2+z^2\le3\))

Vậy Min P = 3/2 khi x=y=z=1

9 tháng 6 2017

à, mình viết nhầm là 1+zx

thanks bạn nhiềuvuivuivui

7 tháng 6 2021

Vì xy + yz + zx = 1 ta có : 

\(\frac{x-y}{z^2+1}+\frac{y-z}{x^2+1}+\frac{z-x}{y^2+1}=\frac{x-y}{z^2+xy+yz+zx}+\frac{y-z}{x^2+xy+yz+zx}+\frac{z-x}{y^2+xy+yz+zx}\)

\(=\frac{x-y}{\left(y+z\right)\left(z+x\right)}+\frac{y-z}{\left(x+y\right)\left(x+z\right)}+\frac{z-x}{\left(y+z\right)\left(x+y\right)}\)

\(=\frac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(x+z\right)\left(z-x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(ĐPCM) 

10 tháng 6 2017

\(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{9}{3+xy+yz+zx}\)

\(\ge\dfrac{9}{3+x^2+y^2+z^2}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)

10 tháng 6 2017

em tưởng \(x^2+y^2+z^2\ge xy+yz+zx\)?

9 tháng 6 2017

Kiểm tra lại điều kiện đề giùm mink cái

9 tháng 6 2017

\(x^2+y^2+z^2\le3\)

Thanks bạn nhiều

NV
21 tháng 2 2019

Sửa lại đề: cho x, y, z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\)

Chứng minh \(A=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\le\dfrac{3}{2}\)

Giải:

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow ab+bc+ac=1\)

\(\Rightarrow A=\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{bc}\left(1+\dfrac{1}{a^2}\right)}}+\dfrac{\dfrac{1}{b}}{\sqrt{\dfrac{1}{ac}\left(1+\dfrac{1}{b^2}\right)}}+\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{ab}\left(1+\dfrac{1}{c^2}\right)}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+1}}+\sqrt{\dfrac{ac}{b^2+1}}+\sqrt{\dfrac{ab}{c^2+1}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+ab+bc+ac}}+\sqrt{\dfrac{ac}{b^2+ab+bc+ac}}+\sqrt{\dfrac{ab}{c^2+ab+bc+ac}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ac}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)

\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\) hay \(x=y=z=\sqrt{3}\)

NV
21 tháng 2 2019

Đề bài này có rất nhiều vấn đề, đầu tiên không có điều kiện x, y, z gì cả? Dương? Â? Bằng 0? Khác 0?

Sau nữa là chiều của BĐT cũng có vấn đề nốt, mình thử với \(x=y=2;z=\dfrac{4}{3}\) thì vế trái ra \(\dfrac{2+\sqrt{30}}{5}\) mà theo casio cho biết thì số này nhỏ hơn \(\dfrac{3}{2}\) , vậy BĐT cũng sai luôn