Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xl mình nhầm ạ, cho x,y,z > 0 . Tìm GTNN x^4+y^4 + z^4 với x+y+z=2
Liên tục sử dụng Bunhiacopxki dạng phân thức:
\(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left[\frac{\left(x+y+z\right)^2}{3}\right]^2}{3}\)
\(=\frac{\frac{\left(x+y+z\right)^4}{9}}{3}=\frac{2^4}{27}=\frac{16}{27}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)
Áp dụng bđt Cauchy-schwarz ta có:
\(\frac{4}{x+1}+\frac{9}{y+2}+\frac{25}{z+3}\ge\frac{\left(2+3+5\right)^2}{x+1+y+2+z+3}=\frac{10^2}{4+6}=10\)
Dấu "=" \(\Leftrightarrow\frac{2}{x+1}=\frac{3}{y+2}=\frac{5}{z+3}\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)
thêm x2 + y2 + z2 = 1 nha
HT nha vinh
Đặt A=x^4+y^4+z^4 ,P=x^2+y^2+z^2
Ta có A=(x^2)^2+(y^2)^2+(z^2)^2
Áp dụng bđt Cauchy-Schwarz ta có
3A=[(x^2)^2+(y^2)^2+(z^2)^2](1^2+1^2+1^2) >/ (x^2+y^2+z^2)^2=> A >/ (x^2+y^2+z^2)^2/3
Áp dụng bđt Cauchy-Schwarz lần 2
3P=(x^2+y^2+z^2)(1^2+1^2+1^2) >/ (x+y+z)^2=> P >/ (x+y+z)^2/3 >/ 2^2/3 >/ 4/3
=> A >/ (4/3)^2/3=16/27
Đẳng thức xảy ra <=> x=y=z=2/3
\(x^4+y^4+z^4\ge\frac{1}{3}\left(x^2+y^2+z^2\right)^2\ge\frac{1}{27}\left(x+y+z\right)^4=\frac{16}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)