K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

Điểm rơi: x=4;y=2;z=4 

\(A=x^2+4xy+4y^2+2z^2=\left(x-2y\right)^2+8xy+2z^2\)

Mà \(xyz=32\Leftrightarrow z^2=\frac{32^2}{x^2y^2}\)

\(VT=\left(x-2y\right)^2+8xy+\frac{2.32^2}{x^2y^2}\ge0+4xy+4xy+\frac{2.32^2}{x^2y^2}\)

Áp dụng AM-GM:

\(4xy+4xy+\frac{2048}{x^2y^2}\ge3\sqrt[3]{32768}=96\)

\(VT\ge96\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=2y\\xy=8\end{cases}}\)....

NV
23 tháng 8 2021

Ta chứng minh BĐT sau:

Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)

\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)

Tương tự và cộng lại:

\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

1 tháng 5 2018

bạn vào trang này nhé có bài như thến này đấy 

//123doc.org//document/3173507-ren-luyen-chuyen-de-tim-maxmin-on-thi-thpt-quoc-gia.htm

20 tháng 5 2020

tính diện tích hình vẽ dưới đây

42.4 cm 25.7 cm 30cm 48.4cm 23m 31.6m

2 tháng 12 2016

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+2+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)

2 tháng 12 2016

A = \(\frac{7}{2}\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)-\frac{5}{2\left(x^2+y^2\right)}\)

Áp dụng bđt cauchy là ra bài