K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 12 2020

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

16 tháng 12 2020

giải thích cho em bài 1 cái đoạn TH1,TH2 với ạ

17 tháng 7 2017

bài 1

coi bậc 2 với ẩn x tham số y D(x) phải chính phường

<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2

=> -8y^2 +1 =k^2 => y =0

với y =0 => x =-1 và -2

NV
12 tháng 12 2020

Cộng vế với vế:

\(x^2+2xy+y^2+x+y=12\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm:

\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

18 tháng 4 2016

\(\begin{cases}xy\left(x+1\right)=x^3+y^2+x-y\left(1\right)\\3y\left(2+\sqrt{9x^2+3}\right)+\left(4y+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\left(2\right)\end{cases}\)

Điều kiện xác định : mọi \(x\in Z\)

Ta có : \(xy\left(x+1\right)=x^3+y^2+x-y\Leftrightarrow x^3-x^2y+y^2-xy+x-y=0\)

                                                       \(\Leftrightarrow\left(x-y\right)\left(x^2-y-1\right)=0\Leftrightarrow\begin{cases}y=x\\y=x^2+1\end{cases}\)

Với \(y=x^2+1\) thay vào phương trình (2) ta được :

\(3\left(x^2+1\right)\left(2+\sqrt{9x^2+3}\right)+\left(4x^2+6\right)\left(\sqrt{1+x+x^2}+1\right)=0\)

Giải ra ta có phương trình vô  nghiệm

Với y=x, thay vào phương trình thứ 2, ta được :

\(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\)

\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=-\left(2x+1\right)\left(\sqrt{3+\left(2x+1\right)^2}+2\right)\)

\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=\left(-2x-1\right)\left(\sqrt{3+\left(-2x-1\right)^2}+2\right)\)

Xét hàm số \(f\left(t\right)=t\left(\sqrt{t^2+2}+2\right)\)

Ta có : \(f'\left(t\right)=\sqrt{t^2+2}+2+\frac{t^2}{\sqrt{t^2+2}}>0\) suy ra hàm số đồng biến

Từ đó suy ra \(3x=-2x\Leftrightarrow x=-\frac{1}{5}\)

Vậy hệ phương trình có nghiệm \(\left(x,y\right)=\left(-\frac{1}{5};-\frac{1}{5}\right)\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Thay \(x = 0,y = 2\) vào hệ \(\left\{ \begin{array}{l}3x + 2y \ge  - 6\\x + 4y > 4\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}3.0 + 2.2 \ge  - 6\\0 + 4.2 > 4\end{array} \right.\) (Đúng)

Thay \(x = 1,y = 0\) vào hệ \(\left\{ \begin{array}{l}3x + 2y \ge  - 6\\x + 4y > 4\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}3.1 + 2.0 \ge  - 6\\1 + 4.0 > 4\left( {Sai} \right)\end{array} \right.\)

Vậy \(\left( {0;2} \right)\) là nghiệm của hệ còn \(\left( {1;0} \right)\) không là nghiệm.

b) Thay \(x =  - 1,y =  - 3\) vào hệ \(\left\{ \begin{array}{l}4x + y \le  - 3\\ - 3x + 5y \ge  - 12\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}4.\left( { - 1} \right) + \left( { - 3} \right) \le  - 3\\ - 3\left( { - 1} \right) + 5.\left( { - 3} \right) \ge  - 12\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 7 \le  - 3\\ - 12 \ge  - 12\end{array} \right.\) (Đúng)

Thay \(x = 0,y =  - 3\) vào hệ \(\left\{ \begin{array}{l}4x + y \le  - 3\\ - 3x + 5y \ge  - 12\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}4.0 + \left( { - 3} \right) \le  - 3\\ - 3.0 + 5.\left( { - 3} \right) \ge  - 12\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 3 \le  - 3\\ - 15 \ge  - 12\left( {Sai} \right)\end{array} \right.\)

Vậy \(\left( { - 1; - 3} \right)\) là nghiệm của hệ còn \(\left( {0; - 3} \right)\) không là nghiệm.

Xét \(y=0\)\(\Rightarrow...\)

Xét \(y\ne0\). Ta có:

\(\left\{{}\begin{matrix}x^2+y^2+xy+2x=5y\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x=5y-y^2-xy\left(1\right)\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2), ta có:

\(\left(5y-y^2-xy\right)\left(x+y-3\right)=-3y\)

\(-y\left(x+y-5\right)\left(x+y-3\right)=-3y\)

\(\Leftrightarrow\left(x+y-5\right)\left(x+y-3\right)=3\left(\cdot\right)\)

Đặt \(x+y-5=t\), phương trình \(\left(\cdot\right)\) trở thành

\(t\left(t+2\right)=3\)\(\Leftrightarrow t^2+2t+1=4\Leftrightarrow\left(t+1\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}t+1=2\\t+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y-5=1\\x+y-5=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=6\\x+y=2\end{matrix}\right.\)\(\Rightarrow...\)