Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x - 3)2 + |y| = 1
\(\Rightarrow\left(2x-3\right)\le1\)
Do x nguyên nên (2x - 3)2 ϵ N mà (2x - 3)2 lẻ và \(0\le\left(2x-3\right)^2\le1\)
nên \(\begin{cases}\left|y\right|=0\\\left(2x-3\right)^2=1\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x-3\in\left\{1;-1\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x\in\left\{4;2\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\x\in\left\{2;1\right\}\end{cases}\)
Vậy có 2 cặp giá trị (x;y) thỏa mãn đề bài là (2;0) và (1;0)
=>\(\hept{\begin{cases}2x-3=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=0\end{cases}}\)
x(1+y)+ (y+1) = 3+1
=> (x+1)(y+1) = 4 = 1.4 =-1(-4) =2.2 =-2(-2)
+x+1 =1 => x =0 và y+1 = 4 => y =3
+x+1 =-1 => x =-2 và y+1 =-4 => y =-5
+x+1 =2 =>x =1;và y+1 =2 => y =1
+x+1 =-2 => x = -3 ; và y+1 =-2 => y =-3
Vì x;y có vai trò như nhau
Nên (x;y) thuộc {(0;3);(3;0);(-2;-5);(-5;-2);(1;1);(-3;-3)}