K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2015

a) 

A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)

\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)

\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)

\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)

\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)

13 tháng 11 2016

giup minh cau b o tren nha

13 tháng 7 2019

a, x + y = 3 => (x + y)2 = 9 <=> x2 + 2xy + y2 = 9 <=>  5 + 2xy = 9 <=> 2xy = 4 <=> xy = 2

Ta có: x3 + y3 = (x + y)(x2 - xy + y2) = 3 . (5 - 2) = 3 . 3 = 9

b, x - y = 5 => (x - y)2 = 25 <=> x2 - 2xy + y2 = 25 <=> 15 - 2xy = 25 <=> -2xy = 10 <=> xy = -5

Ta có: x3 - y3 = (x - y)(x2 + xy + y2) = 5 . (15 - 5) = 5 . 10 = 50 

NM
12 tháng 8 2021

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

8 tháng 8 2017

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

8 tháng 8 2017

sai con khi

4 tháng 10 2019

a, x + y = 5

=> (x + y)^2 = 5^2

=> x^2 + 2xy + y^2 = 25

có xy = 4

=> x^2 + 2.4 + y^2 = 25

=> x^2 + y^2 = 17

4 tháng 10 2019

+)vì x + y =5

=> (x+y)2=25

=> x2+2xy+y2=25

=>x2+y2+8=25 ( vì xy =4 )

=>x2+y2=17

18 tháng 8 2020

Gọi x,y là nghiệm của phương trình:

\(\left\{{}\begin{matrix}S=x+y=3\\P=x.y=2\end{matrix}\right.\Rightarrow a^2-S.a+P=0\)

\(\Leftrightarrow a^2-3a+2=0\Leftrightarrow\left[{}\begin{matrix}a_1=x=2\\a_2=y=1\end{matrix}\right.\)

a)\(x^2+y^2=1^2+2^2=5\)

b)\(x^3+y^3=1^3+2^3=9\)

c)\(x^4+y^4=1^4+2^4=17\)

d)\(x^5+y^5=1^5+2^5=33\)

e)\(x^6+y^6=1^6+2^6=65\)

16 tháng 8 2020

CÓ:     \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=5\)

CÓ:     \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(5-2\right)=3.3=9\)

CÓ:     \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=5^2-2.2^2=25-8=17\)

CÓ:     \(x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-x^4y-xy^4=3.17-xy\left(x^3+y^3\right)\)

\(=51-2.9=51-18=33\)

CÓ:     \(x^6+y^6=\left(x+y\right)\left(x^5+y^5\right)-xy^5-x^5y\)

\(=3.33-xy\left(x^4+y^4\right)=3.33-2.17\)

\(=99-34=65\)

16 tháng 8 2020

\(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=9-4=5\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=27-18=9\)

\(x^4+y^4=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-3xy.2xy\)

\(=3^4-4.2.5-3.2.2.2=81-40-24=17\)