Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=4\left(x+y\right)\left(x^2+y^2-xy\right)-6\left[\left(x+y\right)^2-2xy\right]\)
\(B=4\left(x^2+y^2-xy\right)-6\left(1-2xy\right)\)
\(B=4\left[\left(x+y\right)^2-3xy\right]-6+12xy\)
\(B=4\left(1-3xy\right)-6+12xy\)
\(B=4-12xy-6+12xy\)
\(B=-2\) ko phụ thuộc x (đpcm)
\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
vì \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}>=\frac{9}{x+1+y+1+z+1}=\frac{9}{1+3}=\frac{9}{4}\)(bđt svacxo)
\(\Rightarrow3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)< =3-\frac{9}{4}=\frac{3}{4}\)
dấu = xảy ra khi x=y=z=\(\frac{1}{3}\)
Theo bất đẳng thức AM-GM dạng cộng mẫu thức ta có :
\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left[\frac{\left(x+y\right)^2}{2}\right]^2}{2}=\frac{1}{8}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Vậy ta có điều phải chứng minh