K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

\(A=\left|x+y\right|=\left|x\right|+\left|y\right|\ge2\sqrt{\left|x\right|\left|y\right|}=2.\) (vì x.y=1>0 )

Amin = 2 khi x = y = 1 hoặc x =y =-1.

19 tháng 4 2017

Ta có :

xy=1

=>x=1 , y=1

=> l 1+1 l

=> l x+y l = l 2 l

=>GTNN của l x+y l=GTNN của l 2 l =-2

Vậy GTNN của l x+y l là -2

4 tháng 3 2017

Cách làm:

(1+x4)(1+y4)

Áp dụng BĐT Bu-nhi-a-cốp-xki, ta có:

\(\left[1+\left(x^2\right)^2\right]+\left[x+\left(y^2\right)^2\right]\ge\left(x^2+y^2\right)^2\)

\(\left[1+\left(x^2\right)\right]^2+\left[1+\left(y\right)^2\right]^2\ge\left[\left(x+y\right)^2-2xy\right]^2\)

Để đạt Min thì \(\left(1+x^4\right)\left(1+y^4\right)=\left[\left(x+y\right)^2-2xy\right]\)

Đặt xy=t, ta có:

\(P=\left(1+x^4\right)\left(1+y^4\right)+4\left(xy-1\right)+\left(3xy-1\right)\)

\(\Leftrightarrow P=\left[\left(x+y\right)^2-2t\right]^2+4\left(t-1\right)+\left(3t-1\right)\)

\(\Leftrightarrow P=\left(4-2t\right)^2+\left(4t-4\right)\left(3t-1\right)\)

\(\Leftrightarrow P=16-16t+4t^2+12t^2-16t+4\)

\(\Leftrightarrow P=16t^2-32t+16+4\)

\(\Leftrightarrow P=\left(4t-4\right)^2+4\)

Ta có: \(\left(4t-4\right)^2\ge0\)

\(\Rightarrow\left(4t-4\right)^2+4\ge4\)

\(\Rightarrow Min_P=4\)

@Phương An

4 tháng 3 2017

\(P=\left(1+x^4\right)\left(1+y^4\right)+4\left(xy-1\right)\left(3xy-1\right)\)

\(\left(1+x^4\right)\ge1;\left(1+y^4\right)\ge1\) => Để \(P_{min}\Leftrightarrow4\left(xy-1\right)\left(3xy-1\right)\)

\(\Rightarrow4\left(xy-1\right)\left(3xy-1\right)=0\Leftrightarrow\left(xy-1\right)=0\)

\(x+y=2\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thì \(\left(xy-1\right)=0\)

\(\Rightarrow\left(1+1^4\right)\cdot\left(1+1^4\right)+4\cdot\left(1\cdot1-1\right)\left(3\cdot1\cdot1-1\right)\)

\(\Rightarrow2\cdot2+0\)

\(\Rightarrow P_{min}=4\)

27 tháng 6 2016

bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng

28 tháng 6 2016

bài 1 sai đề

28 tháng 6 2016

3. 

P=(x+y)(x^2-xy+y^2)+xy

P=x^2+y^2-xy+xy

P=x^2+y^2

23 tháng 2 2017

Ta có :

a\(^4\)+b\(^4\)= ( a^2 - b^2) ^2 + 2(ab)^2

               =( (a-b) * (a+b) )^2 +2 (ab)^2

=(a-b) ^2 +2(ab)^2 (a+b = 1)

= (a+b) ^2 + 2ab + 2(ab)^2

=1+ 2ab + 2(ab)^2

= (a^2*b^2) ^2 +a^2*b^2 

( Tự lập luận tiếp nhé lười đánh quá hihi)

Vậy min của biểu thức = 1

23 tháng 2 2017

a^4+b^4=1

/x+y/=1