Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)
\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)
\(\Rightarrow-26\le A-4\le26\)
\(\Rightarrow-22\le A\le30\)
\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)
\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)
Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)
\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)
\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)
\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)
Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)
Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)
\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)
Biết x^2+y^2=52
tìm GTLN,GTNN của A=2x+3y
áp dụng H) có:
A² = (2x+3y)² ≤ (4 + 9)(x² + y²) = 13.52 = 676
=> - 26 ≤ A ≤ 26
Amin = - 26 ; A max = 26 đạt được khi:
x/y = 2/3 <=> x = 2y/3 kết hợp x² + y² = 52 => y² + 4y²/9 = 52 <=> y= ± 6 , x = ± 4
GTNN
p=x^2-2x-y
p=x^2-(2x+y)
x^2>=0=>P>=-(2x+y)=-4
x=0; y=4 thoa man dk
GTLN
3p=3x^2-4x-(2x+3y)
khong co gt ln
\(x^2+y^2\le x+y\Leftrightarrow\left(2x-1\right)^2\le-4y^2+4y+1\text{ (1)}\)
+Nếu \(-4y^2+4y+1< 0\) thì (1) có \(VT\ge0>VP\), (1) ko thỏa --> loại.
+Nếu \(-4y^2+4y+1=0\Leftrightarrow y=\frac{1+\sqrt{2}}{2}\text{ }\left(do\text{ }y>0\right)\) thì\(\left(2x-1\right)^2\le0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
\(A=x+3y=2+\frac{3}{\sqrt{2}}\approx4.12\)
+Xét \(-4y^2+4y+1>0\Leftrightarrow\frac{1-\sqrt{2}}{2}< y< \frac{1+\sqrt{2}}{2}\)
\(\Rightarrow0< y< \frac{1+\sqrt{2}}{2}\approx1.207\)
\(\left(1\right)\Leftrightarrow-\sqrt{-4y^2+4y+1}\le2x-1\le\sqrt{-4y^2+4y+1}\)
\(\Rightarrow2x\le\sqrt{2-\left(2y-1\right)^2}+1\)
\(2A=2x+6y\le\sqrt{2-\left(2y-1\right)^2}+3\left(2y-1\right)+1+3\)
Áp dụng bđt Bu-nhia-cop-xki
\(1.\sqrt{2-\left(2y-1\right)^2}+3.\left(2y-1\right)\le\sqrt{1^2+3^2}.\sqrt{2-\left(2y-1\right)^2+\left(2y-1\right)^2}=2\sqrt{5}\)
Dấu bằng xảy ra khi \(\frac{1}{3^2}=\frac{2-\left(2y-1\right)^2}{\left(2y-1\right)^2}\Leftrightarrow\left(2y-1\right)^2=\frac{9}{5}\)
\(\Leftrightarrow2y-1=\pm\frac{3}{\sqrt{5}}\Leftrightarrow\orbr{\begin{cases}y=\frac{3}{2\sqrt{5}}+\frac{1}{2}\approx1.17\in\left(0;\frac{1+\sqrt{2}}{2}\right)\\y=-\frac{3}{2\sqrt{5}}+\frac{1}{2}< 0\end{cases}}\)
\(\Rightarrow2A\le4+2\sqrt{5}\)
\(\Rightarrow A\le2+\sqrt{5}\approx4.23\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}y=\frac{3}{2\sqrt{5}}+\frac{1}{2}\\x=\frac{1+\sqrt{2-\left(2y-1\right)^2}}{2}=\frac{1}{2\sqrt{5}}+\frac{1}{2}\end{cases}}\)
\(A^2=\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=13^2\)
\(\Rightarrow A\le13\Rightarrow A_{max}=13\) khi \(\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)