K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
G
0
TT
0
NV
Nguyễn Việt Lâm
Giáo viên
28 tháng 2 2019
Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)
\(\Leftrightarrow P=\dfrac{2sin^2a+12sina.cosa}{1+2sina.cosa+2cos^2a}=\dfrac{1-cos2a+6sin2a}{2+sin2a+cos2a}\)
\(\Leftrightarrow P\left(2+sin2a+cos2a\right)=1-cos2a+6sin2a\)
\(\Leftrightarrow\left(P-6\right)sin2a+\left(P+1\right)cos2a=1-2P\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(P-6\right)^2+\left(P+1\right)^2\ge\left(1-2P\right)^2\)
\(\Leftrightarrow P^2+3P-18\le0\Rightarrow-6\le P\le3\)
Vậy \(\left\{{}\begin{matrix}P_{max}=3\\P_{min}=-6\end{matrix}\right.\)
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)+10=-y^2\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+5\right)=-y^2\)
Dễ thấy \(-y^2\le0\Rightarrow\left(x+y+2\right)\left(x+y+5\right)\le0\)
\(\Leftrightarrow-5\le x+y\le-2\)
\(\Leftrightarrow-4\le x+y+1\le-1\)
Vậy....