K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

hikkkkkkkk làm sắp xong bấm lộn nút mất tiêu

9 tháng 1 2016

x2+5y2-2xy+2y+2x+2=0

<=>(x2-2xy+y2)+(2x-2y)+1+(4y2+4y+1)=0

<=>(x-y)2+2.(x-y)+1+(2y+1)2=0

<=>(x-y+1)2+(2y+1)2=0

<=>x-y=-1 và y=-1/2

<=>x=-1-1/2=-3/2 và y=-1/2

Vậy: \(H=\frac{x^2-7xy+52}{x-y}=\frac{x^2-xy-6xy+52}{-1}=-\left[x^2-6xy+52\right]\)

còn lại bạn chỉ cần thay vào tính thui nha

 

20 tháng 11 2019

(x+y+9+2xy-6x-6y)+(y2+4y+4)=0

(x+y-3)2+(y+2)2=0.vì (x+y-3)2>=0;(y+2)2>=0

suy ra x+y-3=0 và y+2=0

x=5;y=-2

thay x,y vào bt H ta đc H=1

2 tháng 10 2020

x2 + 2y2 + 2xy - 6x - 2y + 13 = 0

<=> ( x2 + 2xy + y2 - 6x - 6y + 9 ) + ( y2 + 4y + 4 ) = 0

<=> [ ( x2 + 2xy + y2 ) - ( 6x + 6y ) + 9 ] + ( y + 2 )2 = 0

<=> [ ( x + y )2 - 2( x + y ).3 + 32 ] + ( y + 2 )2 = 0

<=> ( x + y - 3 )2 + ( y + 2 )2 = 0

Ta có : \(\hept{\begin{cases}\left(x+y-3\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x+y-3\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Dấu "=" xảy ra <=> x = 5 ; y = -2

Thế x = 5 ; y = -2 vào A ta được :

\(A=\frac{5^2-7\cdot5\cdot\left(-2\right)+52}{5-\left(-2\right)}=\frac{25+70+52}{7}=\frac{147}{7}=21\)

11 tháng 7 2016

chiu

j

2 tháng 10 2020

x2 + 2y2 + 2xy - 6x - 2y + 13 = 0

<=> ( x2 + 2xy + y2 - 6x - 6y + 9 ) + ( y2 + 4y + 4 ) = 0

<=> [ ( x2 + 2xy + y2 ) - ( 6x + 6y ) + 9 ] + ( y + 2 )2 = 0

<=> [ ( x + y )2 - 2( x + y ).3 + 32 ] + ( y + 2 )2 = 0

<=> ( x + y - 3 )2 + ( y + 2 )2 = 0

Ta có : \(\hept{\begin{cases}\left(x+y-3\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x+y-3\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Dấu "=" xảy ra <=> x = 5 ; y = -2

Thế x = 5 ; y = -2 vào A ta được :

\(A=\frac{5^2-7\cdot5\cdot\left(-2\right)+52}{5-\left(-2\right)}=\frac{25+70+52}{7}=\frac{147}{7}=21\)

26 tháng 1 2016

kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh

3 tháng 1 2021

Ta có: 5x2+5y2+8xy-2x+2y+2=0

=> 4x2+8xy+4y2+x2-2x+1+y2+2y+1=0

=> (2x+2y)2+(x-1)2+(y+1)2=0

=> {2x+2y=0 => x=-y

      {x-1 = 0 => x=1

      {y+1 =0 => y=-1

=> x=1, y=-1

Thay vào biểu thức M, ta có:

M=(1+-1)2015+(1-2)2016+(-1+1)2017=0+1+0=1 (đpcm)

20 tháng 12 2016

bài đầu tách thằnh 4x^2 và 4y^2 rồi gộp 2 cái đó vs 8xy rồi dùng hằng đẳng thức. cái còn lại thì ùng x^2 vs 2x và 1, đống còn lại cũng thế

bài sau chưa nghĩ j hêt

13 tháng 12 2017

phân tích đẳng thức trên

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

8 tháng 10 2023

E kh hiểu lắm ạ="))

13 tháng 12 2020

chào bạn

21 tháng 4 2017

\(x^2+2y^2+2xy-2x-6y+5=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(2x+2y\right)+1+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-2\right)^2=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left(x+y-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Khi đó \(P=\dfrac{\left(-1\right)^2-7\cdot\left(-1\right)\cdot2+51}{-1-2}=-22\)