K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 3 2019

\(x^2+4y^2+\frac{1}{4}-4xy-x+2y+y^2-\frac{25}{4}=0\)

\(\Leftrightarrow\left(x-2y-\frac{1}{2}\right)^2=\frac{25}{4}-y^2\le\frac{25}{4}\)

\(\Rightarrow\frac{-5}{2}\le x-2y-\frac{1}{2}\le\frac{5}{2}\)

\(\Rightarrow-2\le x-2y\le3\)

\(\Rightarrow-1\le x-2y+1\le4\) (đpcm)

Dấu "=" xảy ra khi \(y=0\)\(x=...\)

2/ \(x^3+2x+1=y^3\)

- Với \(x=0\Rightarrow y=1\)

\(VT=x^3+3x^2+3x+1-3x^2-x=\left(x+1\right)^3-x\left(3x+1\right)\) (1)

Do \(x\left(3x-1\right)\ge0\) \(\forall x\in Z\)

\(\Rightarrow VT\le\left(x+1\right)^3\Rightarrow y^3\le\left(x+1\right)^3\Rightarrow y\le x+1\)

Lại có:

\(VT=x^3-3x^2+3x-1+3x^2-x+2=\left(x-1\right)^3+3x^2-x+2\)

Do \(3x^2-x+2>0\) \(\forall x\Rightarrow VT>\left(x-1\right)^3\Rightarrow y^3>\left(x-1\right)^3\Rightarrow y>x-1\)

\(\Rightarrow x-1< y\le x+1\Rightarrow\left[{}\begin{matrix}y=x\\y=x+1\end{matrix}\right.\)

- Với \(y=x\) thay vào pt ta được: \(2x+1=0\Rightarrow x=\frac{-1}{2}\left(ktm\right)\)

- Với \(y=x+1\) từ \(\left(1\right)\Rightarrow x\left(3x+1\right)=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;1\right)\) là cặp nghiệm nguyên duy nhất

29 tháng 12 2021

Ta có : x2+5y2+2y-4xy-3=0 

<=> (x-2y)+ (y-1)= 4

<=> (y-1)= 4 - (x-2y)2

Vì (y-1)≥ 0 => 4 - (x-2y)≥0

=> (x-2y)2 ≤ 4 => |x-2y| ≤ 2

Mình làm vậy không biết đúng kh nha

29 tháng 12 2021

là (y+1)2 nha mk viết lộn

NV
2 tháng 4 2021

\(VT\le\dfrac{x}{2x+2y+2}+\dfrac{y}{2yz+2z+2}+\dfrac{z}{2z+2x+2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{x}{x+y+1}+\dfrac{y}{y+z+1}+\dfrac{z}{z+x+1}\le1\)

\(\Leftrightarrow\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(z+x+1\right)}+\dfrac{\left(y+1\right)^2}{\left(y+1\right)\left(x+y+1\right)}+\dfrac{\left(z+1\right)^2}{\left(z+1\right)\left(y+z+1\right)}\)

\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{\left(x^2+y^2+z^2\right)+3\left(x+y+z\right)+xy+yz+zx+3}\)

\(VT\ge\dfrac{6\left(x+y+z\right)+2\left(xy+yz+zx\right)+12}{3\left(x+y+z\right)+xy+yz+zx+6}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

NV
15 tháng 12 2018

Do \(x,y>0\) BĐT tương đương:

\(\dfrac{x^2+2y^2+3}{2}\ge xy+y+1\)

\(\Leftrightarrow x^2+2y^2+3\ge2xy+2y+2\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2y+1\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh xong

15 tháng 12 2018

Vì x,y>0 nên các mẫu thức dương.

BĐT<=>\(2\left(xy+y+1\right)\le x^2+2y^2+3\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\left(1\right)\)

(1) đúng với mọi x,y>0 nên BĐT đã cho được chứng minh.

Dấu "=" xảy ra khi và chỉ khi x=y=1.

10 tháng 6 2023

Ta cần chứng minh: 

\(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(1\right)\left(a,b>0\right)\)

\(\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{a+b}{ab}\\ \Leftrightarrow4ab\le\left(a+b\right)^2\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

\(DBXR\Leftrightarrow a=b\)

Do các phép biến đổi tương đương nên (1) luôn đúng

Áp dụng (1), ta có:

\(\dfrac{1}{2x+y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{4}\left[\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\right]=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Chứng minh tương tự, ta được:

\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)

Cộng từng vế BĐT, ta được:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}.\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)Hay \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\left(đpcm\right)\)

\(DBXR\Leftrightarrow x=y=z=\dfrac{3}{4}\)

10 tháng 6 2023

thank

23 tháng 10 2017

bài này em chưa học em mới lớp 7 à anh ơi