K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

Ta có: 4x2 + 12xy + 10y2 + 4x + 4y + 2 = 0

<=> (4x2 + 12xy + 9y2) + 2(2x + 3y) + 1 + (y2 - 2y + 1) = 0

<=> (2x + 3y)2 + 2(2x + 3y) + 1 + (y - 1)2 = 0

<=> (2x + 3y + 1)2 + (y - 1)2 = 0

<=> \(\hept{\begin{cases}2x+3y+1=0\\y-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-\frac{1+3y}{2}\\y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)(tm)

Khi đó: P = \(\frac{x^2+y^2+xy}{3xy}=\frac{\left(-2\right)^2+1^2-2.1}{3.\left(-2\right).1}=-\frac{1}{2}\)

26 tháng 11 2018

\(x^2+2y^2-3xy=0\)

\(\Rightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)

\(\Rightarrow\left(x-2y\right)\left(x-y\right)=0\Rightarrow\orbr{\begin{cases}x=2y\\x=y\end{cases}}\)

x = 2y thì \(A=\frac{2018.2y.y}{\left(2y\right)^2+2y^2}=\frac{4036y^2}{6y^2}=\frac{2018}{3}\)

x = y thì \(A=\frac{2018.y.y}{y^2+y^2}=\frac{2018y^2}{2y^2}=1009\)

Vậy \(\orbr{\begin{cases}A=\frac{2018}{3}\\A=1009\end{cases}}\)

11 tháng 6 2020

Cho các số thực x,y,z thỏa mãn: (x-y)(x+y)=z^2 và 4y^2=5+7z^2. Tính giá trị của biểu thức S= 2x^2 + 10y^2 - 23z^2

\(\left(x-y\right)\left(x+y\right)=z^2\)

\(\Leftrightarrow x^2=y^2+z^2\)

\(\Rightarrow\text{S= 12y^2 - 21z^2}\)

\(\Rightarrow\text{S= 3(4y^2 - 7z^2)}\)

Mà: 4y^2=5+7z^2

suy ra S=3*5=15

23 tháng 10 2020

Ta có: \(4x^2+y^2=8+3xy\Leftrightarrow4x^2-4xy+y^2=8-xy\)

\(\Leftrightarrow\left(2x-y\right)^2=8-xy\ge0\forall x,y\inℝ\Rightarrow xy\le8\)

\(\Rightarrow P=xy+2020\le8+2020=2028\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}2x=y\\xy=8\end{cases}}\Rightarrow\left(x,y\right)\in\left\{\left(2;4\right);\left(-2;-4\right)\right\}\)

18 tháng 3 2018

  Ta có 1/x+1/y+1/z=0 
=>1/x+1/y=-1/z 
=>(1/x+1/y)^3= (-1/z)^3 
=>1/x^3+1/y^3+3.1/x.1/y.(1/x+1/y) =-1/z^3 
=>1/x^3+1/y^3+1/z^3= -3.1/x.1/y.(1/x+1/y) =3/(xyz) (vì 1/x+1/y=-1/z) 
Mặt khác: 1/x+1/y+1/z=0 
=>(xy+yz+zx)/(xyz)=0 
=>xy+yz+zx=0 
A=yz/x^2 +2yz + xz/y^2+ 2xz + xy/z^2+ 2 xy 
=xyz/x^3+xyz/y^3+xyz/z^3 +2(xy+yz+zx) (vì x,y,z khác 0) 
=xyz(1/x^3+1/y^3+1/z^3) (vì xy+yz+zx=0) 
=xyz.3/(xyz) (vì 1/x^3+1/y^3+1/z^3=3/(xyz) ) 
=3 
Vậy A=3.

3 tháng 11 2016

Câu 1:

(2x - 3)2 - 4 (x - 3) (x + 3) = (-11)

<=> (4x- 12x +9) - 4 . (X2 - 9) + 11 =0

<=> 4x2 - 12x + 9 - 4x2 + 36 + 11 = 0

<=> -12x + 46 = 0

<=> X = 23/6

3 tháng 11 2016

Câu 2: 

x2 + 4x - y2 + 4y = 0

<=> (x2 - y2) + (4x + 4y) = 0

<=> (x + y) (x - y) + 4 (x + y) = 0

<=> (x+y) (x - y + 4) = 0

5 tháng 12 2018

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

29 tháng 1 2019

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.- 

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

21 tháng 12 2017

Đặt \(B=xy=2013-A\) thế vô cái cần tìm thì được

\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow x^2y^2+20x^4-10x^2+1=0\)

\(\Leftrightarrow20x^4-10x^2+1+B^2=0\)

\(\Leftrightarrow B^2=\frac{1}{4}-\left(\sqrt{20}x^2-\frac{\sqrt{5}}{2}\right)^2\le\frac{1}{4}\)

\(\Leftrightarrow-\frac{1}{2}\le B\le\frac{1}{2}\)

\(\Leftrightarrow-\frac{1}{2}\le2013-A\le\frac{1}{2}\)

\(\Leftrightarrow2012,3\le A\le2013,5\)

14 tháng 5 2019

bạn chưa ghi gtnn , gtln xảy ra khi x=? và y=?