Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v
\(gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3\)
Ta có: \(LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\)
\(=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}\)
\(=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}\) (thay cái giả thiết vào:v)
\(\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}\)
\(=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}\) (1)
Từ giả thiết dễ dàng chứng minh \(ab\le1\). Từ đó thay vào (1) ta có đpcm.
Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v
gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4gt⇔(x1+1)(y1+1)=4
Đặt \frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3x1=a;y1=b⇒(a+1)(b+1)=4⇒ab+a+b=3
Ta có: LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}LHS=3x2+11+3y2+11
=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}=3(a1)2+11+3(b1)2+11
=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}=a2+3a+b2+3b=(a+1)(a+b)a+(b+1)(a+b)b (thay cái giả thiết vào:v)
\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}≤21(a+1a+b+1b+a+ba+b)=21(a+1a+b+1b)+21
=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}=21(ab+a+b+1ab+3)+21=21(4ab+3)+21 (1)
Từ giả thiết dễ dàng chứng minh ab\le1ab≤1. Từ đó thay vào (1) ta có đpcm.
ta là nhà tiên chi đây
.
.
.
.
.
.
chắc chắn bọ̣̣̣̣̣̣̣̣̣n mày sẽ̃̃̃̃̃̃̃̃ nhấ́́́́́n đọc thêm
Đặt \(\left(\frac{1}{x};\frac{1}{y}\right)=\left(a;b\right)\Rightarrow ab+a+b=3\)
\(\Rightarrow ab+2\sqrt{ab}\le3\Rightarrow\left(\sqrt{ab}+3\right)\left(\sqrt{ab}-1\right)\le0\)
\(\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)
\(P=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}=\frac{a}{\sqrt{ab+a+b+a^2}}+\frac{b}{\sqrt{ab+a+b+b^2}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+1\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+1\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+1}+\frac{b}{a+b}+\frac{b}{b+1}\right)\)
\(P\le\frac{1}{2}\left(1+\frac{a}{a+1}+\frac{b}{b+1}\right)=\frac{1}{2}\left(1+\frac{ab+a+ab+b}{ab+a+b+1}\right)=\frac{1}{2}\left(1+\frac{ab+3}{4}\right)\)
\(P\le\frac{1}{2}\left(1+\frac{1+3}{4}\right)=1\)
Dấu " = " xảy ra khi \(a=b=1\) hay \(x=y=1\)
Chúc bạn học tốt !!!
Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\); \(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)
Bài 1 :
Từ \(\left(x+1\right)\left(y+1\right)=4xy\)
\(\Rightarrow\frac{x+1}{x}.\frac{y+1}{y}=4\Leftrightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=4\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y}\), ta có :
\(\left(1+a\right)\left(1+b\right)=4\Leftrightarrow3=a+b+ab\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+2\sqrt{ab}+ab\ge2\sqrt{ab}+ab\)
Từ đó \(ab\le1\)
Áp dụng AM - GM cho 2 số thực dương ta có :
\(\frac{1}{\sqrt{3x^2+1}}=\frac{\frac{1}{x}}{\sqrt{3+\frac{1}{x^2}}}=\frac{a}{\sqrt{a+b+ab+a^2}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+1\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+1}\right)\)
Tương tự ta có :
\(\frac{1}{\sqrt{3y^2+1}}\le\frac{1}{2}.\left(\frac{a}{a+b}+\frac{b}{b+1}\right)\)
Cộng vế theo vế ta được : \(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{a}{a+1}+\frac{b}{b+1}\right)\) \(\le\frac{1}{2}\left(1+\frac{2ab+a+b}{\left(a+1\right)\left(b+1\right)}\right)\le\frac{1}{2}\left(1+\frac{ab+3}{2}\right)\le\frac{1}{2}\left(1+\frac{1+3}{4}\right)\le1\) Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\frac{a}{a+b}=\frac{a}{b+1}\\\frac{b}{a+b}=\frac{b}{b+1}\end{matrix}\right.\Leftrightarrow a=b=1\Leftrightarrow x=y=1\)Bài 1 :
Vì \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\) nên \(b=\frac{2ac}{a+c}\)
Do đó : \(\frac{a+b}{2a-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}=\frac{c^2+3ac}{2a^2}=\frac{a+3c}{2a}\)
Và : \(\frac{c+b}{2c-b}=\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{c^2+3ac}{2c^2}=\frac{c+3a}{2c}\)
Suy ra \(P=\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}=\frac{ac+3c^2+ac+3a^2}{2ac}\)
\(=\frac{3\left(a^2+c^2\right)+2ac}{2ac}\ge\frac{3.2ac+2ac}{2ac}=\frac{8ac}{2ac}=4\)
Vậy \(P\ge4\) với mọi a,b,c thỏa mãn đề bài. Dấu bằng xảy ra khi a=b=c
Vậy GTNN của P là 4 khi a=b=c
Chúc bạn học tốt !!
Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)
Khi đó BĐT <=>
\(\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+z\right)\left(x+z\right)}+\frac{1}{\left(x+y\right)\left(y+z\right)}\ge\frac{2}{3}\left(\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}+...\right)\)
<=> \(\frac{x+y+z}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\frac{x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}}{\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}\right)^3\)
<=>\(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\ge\frac{1}{3}\left(x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}\right)^3\)
<=> \(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\right)^3\)(1)
Xét \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)
<=> \(9\left[xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\right]\ge8\left(xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+3xyz\right)\)
<=> \(xy\left(y+x\right)+yz\left(y+z\right)+xz\left(x+z\right)\ge6xyz\)
<=> \(x\left(y-z\right)^2+z\left(x-y\right)^2+y\left(x-z\right)^2\ge0\)luôn đúng
Khi đó (1) <=>
\(\left(x+y+z\right).\frac{2\sqrt{2}}{3}.\sqrt{x+y+z}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+....\right)^3\)
<=> \(\sqrt{2\left(x+y+z\right)}\ge\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\)
Áp dụng buniacopxki cho vế phải ta có
\(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\le\sqrt{\left(x+y+z\right)\left(3-xy-yz-xz\right)}\)
\(=\sqrt{2\left(x+y+z\right)}\)
=> BĐT được CM
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)