K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 7 2020

\(P=xy-3\left(x+y\right)+9\)

Đặt \(x+y=a\Rightarrow1< a\le\sqrt{2}\)

\(a^2=x^2+y^2+2xy=1+2xy\Rightarrow xy=\frac{a^2-1}{2}\)

\(P=\frac{a^2-1}{2}-3a+9\Rightarrow2P=a^2-6a+17\)

\(2P=a^2-6a-2+6\sqrt{2}+19-6\sqrt{2}\)

\(2P=\left(a+\sqrt{2}\right)\left(a-\sqrt{2}\right)-6\left(a-\sqrt{2}\right)+19-6\sqrt{2}\)

\(2P=\left(\sqrt{2}-a\right)\left(6-\sqrt{2}-a\right)+19-6\sqrt{2}\ge19-6\sqrt{2}\)

\(\Rightarrow P\ge\frac{19-6\sqrt{2}}{2}\)

Dấu "=" xảy ra khi \(a=\sqrt{2}\) hay \(x=y=\frac{\sqrt{2}}{2}\)

26 tháng 4 2018

Đáp án B.

Từ giả thiết, suy ra

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm  f ' ( t ) = 5 t . ln 5 - ln 3 3 t + 1 > 0 ,   ∀ t ∈ ℝ ⇒ hàm số f ( t ) luôn đồng biến trên .

Suy ra

Do y > 0 nên x + 1 x - 2 > 0 ⇔ [ x > 2 x < - 1 . Mà x > 0  nên  x > 2 .

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2 trên 2 ; + ∞ .

Đạo hàm

Lập bảng biến thiên của hàm số trên  2 ; + ∞ , ta thấy min   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3 khi x = 2 + 3  và  x = 1 + 3 .

5 tháng 6 2019

6 tháng 1 2018

22 tháng 1 2018

Từ giả thiết ta suy ra

Xét hàm số  f ( t ) = 5 t - 1 3 t + t   với  t   ∈ ℝ ,   f ' ( t ) = 5 t . ln 5 + 3 - t . ln 3 + 1 > 0 ;   ∀ t ∈ ℝ

Suy ra y= f( t) là hàm số đồng biến trên R mà từ ( * ) suy ra

f (x+ 2y) =f( xy-1)  hay x+ 2y= xy-1

với x>0 suy ra y>1.

Khi đó

 

Xét hàm số

  f ( y ) = y 2 + y + 1 y - 1   t r ê n   1 ; + ∞ f ' y = y 2 - 2 y - 2 y - 1 2 = 0 ⇔ y = ± 1 + 3 f 1 + 3 = 3 + 2 3 ;   lim y → 1 f ( y ) = lim y → + ∞ f ( y ) = + ∞

Do đó, giá trị nhỏ nhất của hàm số là  3 + 2 3 .

Vậy kết quả là  3 + 2 3

Chọn B.

NV
5 tháng 8 2021

Do \(x^2+y^2=1\), đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)

\(P=\left(3-sina\right)\left(3-cosa\right)=9-3\left(sina+cosa\right)+sina.cosa\)

Đặt \(sina+cosa=t\Rightarrow t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(t^2=1+2sina.cosa\Rightarrow sina.cosa=\dfrac{t^2-1}{2}\)

\(P=9-3t+\dfrac{t^2-1}{2}=\dfrac{1}{2}t^2-3t+\dfrac{17}{2}\)

Xét hàm \(f\left(t\right)=\dfrac{1}{2}t^2-3t+\dfrac{17}{2}\) trên \(\left[-\sqrt{2};\sqrt{2}\right]\)

\(f'\left(t\right)=t-3=0\Rightarrow t=3\notin\left[-\sqrt{2};\sqrt{2}\right]\)

\(f\left(-\sqrt{2}\right)=\dfrac{19+6\sqrt{2}}{2}\) ; \(f\left(\sqrt{2}\right)=\dfrac{19-6\sqrt{2}}{2}\) 

\(\Rightarrow P_{min}=f\left(\sqrt{2}\right)=\dfrac{19-6\sqrt{2}}{2}\) khi \(t=\sqrt{2}\) 

12 tháng 11 2019

Đáp án C.

Ta có: GT

<=> 5x+2y + x + 2y – 3–x–2y = 5xy–1 – 31–xy + xy – 1.

X é t   h à m   s ố   f t = 5 t + t - 3 - t

⇒ f t = 5 t ln 5 + 1 + 3 - t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên  ℝ suy ra

f(x+2y) = f(xy – 1) <=> x+ 2y = xy – 1

⇔ x = 2 y + 1 y - 1 ⇒ T = 2 y + 1 y - 1 + y .

Do x > 0 => y > 1.

Ta có:

T = 2 + y + 3 y - 1 = 3 + y - 1 + 3 y - 1 ≥ 3 + 2 3 .

15 tháng 4 2019

28 tháng 3 2018

Đáp án A

Đặt Từ giả thiết

 

Tìm GTNN của hàm số

14 tháng 7 2018

22 tháng 11 2019

Đáp án B

Ta có