\(5x^2+2y^2+4xy-6x+2\ge0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

5x^2+2y^2+4xy-6x+2

= 4x^2+4xy+y^2 +x^2 - 6xy + 9 +y^2

= (2x+y)^2 + (x-3)^2 + (y^2+9) > 0

hok tốt

................

28 tháng 6 2019

a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)

BĐT đúng

b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

BĐT đúng

c)Dấu "=" ko xảy ra???

\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)

\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)

\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)

18 tháng 9 2019

a. −x2 + 6x - 10

= −(x2 − 6x) − 10

= −(x2 − 2.x.3 + 32 − 9) − 10

= −(x − 3)2 + 9 − 10

= −(x − 3)2 −1

(x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1

Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x

18 tháng 10 2016

Ta có:

\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Rightarrow\sqrt{\frac{2}{xy}}\le1\Rightarrow xy\ge2\)

\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)

\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\)\(\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\)(Đpcm0

Dấu = khi x=1;y=2

21 tháng 10 2016

Ta có: 

\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Rightarrow\sqrt{\frac{2}{xy}}\le1\Rightarrow xy\ge2\)

\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)

\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\)(Đpcm)

Dấu = khi x=1;y=2

21 tháng 10 2016

nhớ k lầm là t lm bài này r` thì fai

18 tháng 10 2016

ngu ngưoi viet cai de cung sai

19 tháng 9 2019

Ta có: \(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Leftrightarrow\sqrt{\frac{2}{xy}}\le1\Leftrightarrow xy\ge2\)

\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)

\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\left(đpcm\right)\)

Dấu "="\(\Leftrightarrow x=1,y=2\)

21 tháng 6 2016

\(VT=x^2+2x\left(1-2y\right)+\left(1-2y\right)^2+\left(5y^2-\left(1-2y\right)^2-10y+14\right)\)

 \(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)  voi  moi  x;y

26 tháng 10 2019

3) 5x2 + y2 -4xy - 2y + 8x + 2013

= ( 4x2 + y2 -4xy -2y + 8x ) + x2 + 2013

= ( 2x - y +1)2 + x2 +2013

Vì ( 2x-y+1)2 \(\ge\)\(\forall x,y\); x2 \(\ge\)0\(\forall x\)

=> (2x - y+1)2 + x2 \(\ge\)0

=> ( 2x-y +1)2 +x2 + 2013\(\ge\)0

hay  A \(\ge0\)\(\forall x,y\)=> A ko âm

26 tháng 10 2019

Giúp mk phần 1 và phần 2 vs!!!

HELP ME PLEASE!!!

29 tháng 4 2017

2,a A+4=4+(5x^2+6x+1)/x^2=(9x^2+6x+1)/x^2=(3x+1)^2/x^2 >/ 0 với mọi x

=>A >/ -4 =>minA=-4 , đẳng thức xảy ra khi x=-1/3 

2,b dễ c/m bđt : x^3+y^3 >/ (x+y)^3/4,khai triển hết ra còn 3(x-y)^2 >/ 0 ,đẳng thức xảy ra khi x=y

x^6+y^6=(x^2)^3+(y^2)^3 >/ (x^2+y^2)^3/4=1/4 ,đẳng thức xảy ra khi x=y=1/căn(2)

29 tháng 4 2017

2,c (a^3-3ab^2)^2=a^6-6a^4b^2+9a^2b^4=5^2=25

    (b^3-3a^2b)^2=b^6-6a^2b^4+9a^4b^2=10^2=100

Cộng theo vế đc a^6+b^6+3a^2b^4+3a^4b^2=(a^2+b^2)^3=25+100=125 =>S=a^2+b^2=5

27 tháng 1 2021

Áp dụng BĐT Cauchy và Cauchy - Schwarz ta có:

 \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy\cdot\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)

\(=\frac{4}{\left(x+y\right)^2}+2+\frac{5}{1^2}=4+2+5=11\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)