K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

thanks

 

11 tháng 2 2016

3x+12y=1+2=3

11 tháng 2 2016

(3x-1)2+|x-2y| = 0 nên (3x-1)2 và |x-2y| đối nhau mà 2 số đều không âm nên chỉ có thể (3x-1)= |x-2y| = 0

=> 3x-1 = 0 ; x-2y = 0 => 3x = 1 => x = 1/3 = 2y => y = 1/6 => 3x+12y = 1 + 12.1/6 = 1 + 2 = 3 

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)

 

30 tháng 12 2015

\(\text{Vì }\left|x-2\right|\ge0;\left(y+1\right)^2\ge0\)

\(\text{Mà }\left|x-2\right|+\left(y+1\right)^2=0\)

\(\Rightarrow x-2=0\text{ và }y+1=0\)

\(\Rightarrow x=2\text{ và }y=-1\)

Khi đó \(x+y=2+\left(-1\right)=2-1=1\).

20 tháng 7 2015

ta có |x-2| \(\ge\)0 và (y+1)^2\(\ge\)0 mà |x-2|+(y+1)^2=0

=>|x-2|=0 và (y+1)^2=0

(=)x=2 và y=-1

=>x+y=2+(-1)=-1

10 tháng 4 2016

\(\left|x+1\right|\ge0\) với mọi x

\(\left|x-y+2\right|\ge0\) với mọi x;y

=>\(\left|x+1\right|+\left|x-y+2\right|\ge0\) với mọi x;y

Mà theo đề:........=0

=>|x+1|=0=>x=-1

và x-y+2=0=>x-y=2=>y=x-2=-1-2=-3

Vậy (x;y)=(-1;-3)

bài 2:36x chia hết cho 3 (1)

75y chia hết cho 3 (2)

=>36x+75y chia hết chỏ ,mà 136 ko chia hết cho 3

=>36x+75y \(\ne\) 136

=>ko có (x;y) thoả mãn đề bài

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:

Áp dụng TCDTSBN:

$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$

$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$

Khi đó:

$|x+y|=|z-1|$

$\Leftrightarrow |2x|=|x-1|$

$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$

$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)

Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

22 tháng 3 2016

câu 2 đâu bạn

22 tháng 3 2016

C1=2 

C2=không có đề

c3=lấy D ở đâu ra vậy(gt không cho)

c4=cho

 khi đó là gì