K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

Ta có:\(\left(y^2-y\right)+2\ge0\Rightarrow2y^3\le y^4+y^2\\ \Rightarrow\left(x^3+y^2\right)+\left(x^2+y^3\right)\le\left(x^2+y^2\right)+\left(y^4+x^3\right)\)

Mà:\(x^3+y^4\le x^2+y^3\)

\(\Rightarrow x^3+y^3\le x^2+y^2\)

10 tháng 3 2020

c1: phân tích từng cái

c2, nhân x cho (1) y cho 2

sau đs dùng bunhia 

từ x+y=1

=> x^2-xy+y^2...

11 tháng 3 2020

\(VT-VP=\frac{\left(3x^2+7xy+3y^2\right)\left(x-y\right)^2}{3\left(1-x^2\right)\left(1-y^2\right)}\ge0\)

NV
17 tháng 12 2020

Với mọi x;y;z ta luôn có:

\(\left(x+y-1\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+2xy-2x-2y+1+z^2-z+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow x^2+y^2+z^2+\dfrac{5}{4}+2xy-2x-2y-z\ge0\)

\(\Leftrightarrow2+2xy-2x-2y\ge z\)

\(\Leftrightarrow2\left(1-x\right)\left(1-y\right)\ge z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)

 

17 tháng 7 2021

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

27 tháng 5 2021

Ta có:  \(\left(y^2-y\right)+2\ge0\Rightarrow2y^3\le y^4+y^2\)

\(\Rightarrow\left(x^3+y^2\right)+\left(x^2+y^3\right)\le\left(x^2+y^2\right)+\left(y^4+x^3\right)\)

Mà \(x^3+y^4\le x^2+y^3\)

\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)

Lại có: \(x\left(x-1\right)^2\ge0;y\left(y+1\right)\left(y-1\right)^2\ge0\)

\(\Rightarrow x\left(x-1\right)^2+y\left(y+1\right)\left(y-1\right)^2\ge0\)

\(\Rightarrow x^3-2x^2+x+y^4-y^3-y^2+y\ge0\)

\(\Rightarrow\left(x^2+y^2\right)+\left(x^2+y^3\right)\le\left(x+y\right)+\left(x^3+y^4\right)\)

Mà \(x^2+y^3\ge x^3+y^4\)

\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)

Và \(\left(x+1\right)\left(x-1\right)\ge0;\left(y-1\right)\left(y^3-1\right)\ge0\)

\(x^3-x^2-x+1+y^4-y-y^3+1\ge0\)

\(\Rightarrow\left(x+y\right)+\left(x^2+y^3\right)\le2+\left(x^3+y^4\right)\)

Mà \(x^2+y^3\ge x^3+y^4\)

\(\Rightarrow x+y\le2\left(3\right)\)

Từ (1), (2), (3) => đpcm

Ta có \(x^2+y^3\ge x^3+y^4\Leftrightarrow x^2+y^2+y^3\ge x^3+y^2+y^4\)

Áp dụng bđt AM-GM ta có \(y^4+y^2\ge2y^3\)

\(\Rightarrow x^2+y^3+y^2\ge x^3+2y^3\)

\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)

Áp dụng bđt Cauchy - Schwarz ta có 

\(\left(x^2+y^2\right)^2\le\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]=\left(x+y\right)\left(x^3+y^3\right)\)

                         \(\le\left(x+y\right)\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)

Lại có

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\le2\left(x+y\right)\)

\(\Rightarrow x+y\le2\left(3\right)\)

Từ (1),(2),(3) => đpcm

Đối với bài này ta cũng có thể chia các khoảng giá trị để chứng minh 

(Nhưng hơi dài và khó hiểu nên mình k làm ) 

Học tốt!!!!!!!!!

15 tháng 6 2017

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

15 tháng 6 2017

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))

NV
31 tháng 12 2021

\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2xz}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{xz+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\) 

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

16 tháng 5 2020

\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)

27 tháng 6 2020

\(VT-VP=\Sigma\frac{\left(x+y\right)\left(x-y\right)^2}{y^2}\ge0\)